Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt’s exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02: Problems on Blackboard due Thursday, February 12, 2015

No class on Tuesday, February 10, 2015
Today’s Outline - February 05, 2015

- Reflection from a thin slab
• Reflection from a thin slab
• Kiessig fringes
Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02: Problems on Blackboard due Thursday, February 12, 2015

No class on Tuesday, February 10, 2015
Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt’s exact recursive calculation

Reading Assignment: Chapter 3.5–3.8
Homework Assignment #02: Problems on Blackboard due Thursday, February 12, 2015
No class on Tuesday, February 10, 2015
Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt’s exact recursive calculation
- Reflection from a graded index
Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt’s exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5–3.8
Today’s Outline - February 05, 2015

• Reflection from a thin slab
• Kiessig fringes
• Kinematical approximation for a thin slab
• Multilayers in the Kinematical Regime
• Parratt’s exact recursive calculation
• Reflection from a graded index

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02:
Problems on Blackboard
due Thursday, February 12, 2015
Today’s Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt’s exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02:
Problems on Blackboard
due Thursday, February 12, 2015

No class on Tuesday, February 10, 2015
We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.
Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.

\[n_0 \rightarrow \text{reflection} \rightarrow n_1 \]

\[n_0 \rightarrow \text{transmission} \rightarrow n_1 \]

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption.

We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate.
Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

\[
\begin{align*}
\mathbf{n}_0 & \quad \mathbf{n}_1 \\
\end{align*}
\]

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption. We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate.
Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

\[r = \frac{Q - Q'}{Q + Q'} \]

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption.

We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate.
Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

\[r = \frac{Q - Q'}{Q + Q'} \]
\[t = \frac{2Q}{Q + Q'} \]
We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

\[r = \frac{Q - Q'}{Q + Q'} \]

\[t = \frac{2Q}{Q + Q'} \]

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption.
We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

\[
n_0 \quad \text{\small \begin{array}{c} n_0 \end{array}} \quad n_1 \quad \text{\small \begin{array}{c} n_1 \end{array}}
\]

\[
r = \frac{Q - Q'}{Q + Q'}
\]

\[
t = \frac{2Q}{Q + Q'}
\]

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption. We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate.
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:
For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

r_{01} – reflection in n_0 off n_1
t_{01} – transmission from n_0 into n_1
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

\[r_{12} \] reflection in n_1 off n_2
\[t_{12} \] transmission from n_1 into n_2

\[r_{01} \] reflection in n_0 off n_1
\[t_{01} \] transmission from n_0 into n_1
For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1
- r_{12} – reflection in n_1 off n_2
- t_{12} – transmission from n_1 into n_2
- r_{10} – reflection in n_1 off n_0
- t_{10} – transmission from n_1 into n_0
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1
- r_{12} – reflection in n_1 off n_2
- t_{12} – transmission from n_1 into n_2
- r_{10} – reflection in n_1 off n_0
- t_{10} – transmission from n_1 into n_0

Build the composite reflection coefficient from all possible events.
The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_01 + t_01 r_{12} t_{10} \cdot p_2 + t_01 r_{12} r_{10} r_{12} t_{10} \cdot p_4 \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal. This adds a phase shift of

\[p_2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient with each pass through the slab.
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal. This adds a phase shift of

\[p_2 = e^{i2(k_1 \sin \alpha) \Delta} = e^{iQ_1 \Delta} \]

which multiplies the reflection coefficient with each pass through the slab.
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} + t_{01} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal.

This adds a phase shift of

\[p_2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient with each pass through the slab.
The composite reflection coefficient for each ray emerging from the top surface is computed:

\[r_{01} + t_{01} r_{12} t_{10} + t_{01} r_{12} r_{10} r_{12} t_{10} \]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} + t_{01} r_{12} t_{10} + t_{01} r_{12} r_{10} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal. This adds a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} \]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[n_0 \]

\[n_1 \]

\[n_2 \]

\[\Delta \]

\[r_{01} \]

\[+ \]

\[t_{01} r_{12} t_{10} \]

\[+ \]

\[t_{01} r_{12} r_{10} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal. This adds a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} + t_{01} r_{12} t_{10} \cdot p^2 + t_{01} r_{12} r_{10} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta\) per traversal. This adds a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} \]

\[+ \]

\[t_{01} r_{12} t_{10} \cdot p^2 \]

\[+ \]

\[t_{01} r_{12} r_{10} r_{12} t_{10} \cdot p^4 \]

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient with each pass through the slab
Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_{01} + t_{01}r_{12}t_{10}p_2 + t_{01}r_{10}r_{21}t_{10}p_4 + \cdots + \sum_{m=0}^{\infty} \left(r_{10}r_{12}p_2 \right)^m \]

Factoring out second term from all the rest.

Summing the geometric series as previously.

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

\[r = Q - Q', \quad t = 2QQ' + Q' \]
Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_0 + t_0 r_{12} t_{10} p^2 + t_0 r_{10} r_{12} t_{10} p^4 + t_0 r_{10} r_{12} t_{10} p^6 + \cdots \]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10}^2 r_{12} t_{10} p^6 + \cdots \]

factoring out second term from all the rest

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

\[r = Q - Q' Q + Q', \]
\[t = 2 Q Q + Q'. \]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_0 + t_0 r_{12} t_{10} p^2 + t_0 r_{10} r_{12} t_{10} p^4 + t_0 r_{10} r_{12} t_{10} p^6 + \cdots \]

factoring out second term from all the rest

\[r_{slab} = r_0 + t_0 t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10} r_{12} t_{10} p^6 + \cdots \]

Factoring out second term from all the rest

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

Summing the geometric series as previously
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_0 + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10}^2 r_{12} t_{10} p^6 + \cdots \]

\[r_{slab} = r_0 + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

= \[r_0 + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

factoring out second term from all the rest

summing the geometric series as previously
The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12}^2 t_{10} p^4 + t_{01} r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]

\[r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

\[= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

factoring out second term from all the rest

summing the geometric series as previously

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

\[r = \frac{Q - Q'}{Q + Q'} \]

\[t = \frac{2Q}{Q + Q'} \]
The composite reflection coefficient can now be expressed as a sum

$$r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10}^2 r_{12} t_{10} p^6 + \cdots$$

Factoring out the second term from all the rest and summing the geometric series as previously, we get:

$$r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} \left(r_{10} r_{12} p^2 \right)^m$$

$$= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2}$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

$$r = \frac{Q - Q'}{Q + Q'}$$
The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12}^2 t_{10} p^4 + t_{01} r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]

\[r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

\[= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

factoring out second term from all the rest

summing the geometric series as previously

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

\[r = \frac{Q - Q'}{Q + Q'}, \quad t = \frac{2Q}{Q + Q'} \]
Applying the Fresnel equations to the top interface

\[
\begin{align*}
 r_{01} &= Q_0 - Q_1 \\
 r_{10} &= Q_1 - Q_0 \\
 t_{01} &= 2Q_0 + Q_1 \\
 t_{10} &= 2Q_1 + Q_0
\end{align*}
\]

we can, therefore, construct the following identity

\[
\begin{align*}
 r_{201} + t_{01} t_{10} &= (Q_0 - Q_1)^2 (Q_0 + Q_1)^2 + 2Q_0 Q_0 + Q_1 2Q_1 Q_1 + Q_0^2 = Q_2 + 2Q_0 Q_1 + Q_2^2
\end{align*}
\]

\[
\begin{align*}
 (Q_0 + Q_1)^2 (Q_0 + Q_1)^2 &= 1
\end{align*}
\]
Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]

\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]

\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]
\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]
\[t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \quad \quad \quad \quad \quad \quad t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \quad \quad \quad \quad \quad \quad t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01} t_{10} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \quad \quad t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \quad \quad t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01} t_{10} = \frac{(Q_0 - Q_1)^2}{(Q_0 + Q_1)^2} + \frac{2Q_0}{Q_0 + Q_1} \frac{2Q_1}{Q_1 + Q_0} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \quad t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \quad t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01} t_{10} = \frac{(Q_0 - Q_1)^2}{(Q_0 + Q_1)^2} + \frac{2Q_0}{Q_0 + Q_1} \cdot \frac{2Q_1}{Q_1 + Q_0} \]

\[= \frac{Q_0^2 + 2Q_0Q_1 + Q_1^2}{(Q_0 + Q_1)^2} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]
\[t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01}t_{10} = \frac{(Q_0 - Q_1)^2}{(Q_0 + Q_1)^2} + \frac{2Q_0}{Q_0 + Q_1} \cdot \frac{2Q_1}{Q_1 + Q_0} \]

\[= \frac{Q_0^2 + 2Q_0Q_1 + Q_1^2}{(Q_0 + Q_1)^2} = \frac{(Q_0 + Q_1)^2}{(Q_0 + Q_1)^2} = 1 \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12}$$

Using the identity $t_{01} t_{10} = 1 - r_{201}$

Expanding over a common denominator and recalling that $r_{10} = -r_{01}$.

In the case of $n_0 = n_2$ there is the further simplification of $r_{12} = -r_{01}$.
Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Expanding over a common denominator and recalling that \(r_{10} = -r_{01} \).

In the case of \(n_0 = n_2 \) there is the further simplification of \(r_{12} = -r_{01} \).

Using the identity \(t_{01} t_{10} = 1 - r_{01}^2 \).
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + \left(1 - r_{01}^2 \right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

Expanding over a common denominator and recalling that \(r_{10} = -r_{01} \).
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + r_{01}^2 r_{12} p^2 + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

Expanding over a common denominator and recalling that \(r_{10} = -r_{01} \).
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_0 + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_0 + (1 - r_{01}^2) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_0 + r_{01}^2 r_{12} p^2 + (1 - r_{01}^2) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

\[r_{slab} = \frac{r_0 + r_{12} p^2}{1 + r_{01} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

Expanding over a common denominator and recalling that \(r_{10} = -r_{01} \).
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_0 + t_0 t_1 r_1 \frac{p^2}{1 - r_0 r_1 p^2} \]

\[= r_0 + \left(1 - r_{01}^2\right) r_1 \frac{p^2}{1 - r_0 r_1 p^2} \]

\[= \frac{r_0 + r_{01}^2 r_1 p^2 + \left(1 - r_{01}^2\right) r_1 p^2}{1 - r_0 r_1 p^2} \]

Using the identity

\[t_0 t_1 = 1 - r_{01}^2 \]

Expanding over a common denominator and recalling that \(r_1 = -r_{01} \).

In the case of \(n_0 = n_2 \) there is the further simplification of \(r_{12} = -r_{01} \).
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_0 + t_0 t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_0 + \left(1 - r_{01}^2 \right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_0 + r_{01}^2 r_{12} p^2 + \left(1 - r_{01}^2 \right) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_0 t_{10} = 1 - r_{01}^2 \]

Expanding over a common denominator and recalling that \(r_{10} = -r_{01} \).

In the case of \(n_0 = n_2 \) there is the further simplification of \(r_{12} = -r_{01} \).
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. They have an oscillation frequency

\[2\pi/\Delta = 0.092 \text{Å}^{-1} \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]
Kiessig Fringes

\[p^2 = e^{iQ_1\Delta} \]

\[r_{slab} = \frac{r_{01}(1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab.
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. They have an oscillation frequency

\[2\pi / \Delta = 0.092 \text{Å}^{-1} \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab.

\[r_{\text{slab}} = \frac{r_{01}}{(1 - r_{01}^2) - \rho^2} \approx r_{01} \left(1 - \rho^2\right) \]

\[r_{\text{slab}} \approx \left(\frac{Qc}{Q0}\right)^2 \left(1 - e^{iQ\Delta}\right) \]

\[q \gg 1 \quad |r_{01}| \ll 1 \]

\[\alpha > \alpha_c \]

\[r_{01} = q_0 - q_1 \]

\[q_0 + q_1 = q_2 \]

\[r_{\text{slab}} \approx -\frac{16\pi r_0}{Q^2} e^{iQ\Delta/2} / \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2} \right) \]

\[-i \left(4\pi r_0 \Delta Q \sin(\alpha) \right) = r_{\text{thin slab}} \]

Since \(Q\Delta \ll 1 \) for a thin slab.
Recall the reflection coefficient for a thin slab.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[q \gg 1 \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle, refraction effects can be ignored and we are in the "kinematical" regime.

\[r_{slab} = \frac{r_0 (1 - p^2)}{1 - r_0^2 p^2} \]

\[q \gg 1 \]

\[|r_0| \ll 1 \quad \alpha > \alpha_c \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle, refraction effects can be ignored and we are in the "kinematical" regime.

\[
\begin{align*}
 r_{slab} &= \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \\
 &\approx r_{01} (1 - p^2)
\end{align*}
\]

\[
q \gg 1 \quad |r_{01}| \ll 1 \quad \alpha > \alpha_c
\]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[|r_{01}| \ll 1 \quad q \gg 1 \quad \alpha > \alpha_c \]
Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[
r_{slab} = \frac{r_{01}(1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01}(1 - p^2) \approx r_{01}(1 - e^{iQ\Delta})
\]

\[
q \gg 1, \quad |r_{01}| \ll 1, \quad \alpha > \alpha_c
\]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} \left(1 - p^2\right)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} \left(1 - p^2\right) \]

\[= r_{01} \left(1 - e^{iQ\Delta}\right) \]

\[q \gg 1 \]

\[|r_{01}| \ll 1 \]

\[\alpha > \alpha_c \]

\[r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta}\right) \]

\[q \gg 1 \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} \]

\[\approx -i \left(4\pi \rho r_{01} \Delta Q \right) \sin\left(Q \Delta / 2\right) Q \Delta / 2 \]

\[\approx -i \lambda \rho r_{01} \Delta \sin \alpha = r_{thin\ slab} \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[
\begin{align*}
 r_{slab} &= \frac{r_{01}(1 - p^2)}{1 - r_{01}^2p^2} \\
 &\approx r_{01}(1 - p^2) \\
 &= r_{01}(1 - e^{iQ\Delta})
\end{align*}
\]

\[
q \gg 1 \quad |r_{01}| \ll 1 \quad \alpha > \alpha_c
\]

\[
r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2}
\]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{\text{slab}} = \frac{r_{01} \left(1 - p^2 \right)}{1 - r_{01}^2 p^2} \approx r_{01} \left(1 - p^2 \right) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[\approx r_{01} \left(1 - e^{iQ\Delta} \right) \]

Since \(Q\Delta \ll 1 \) for a thin slab

\[q \gg 1 \quad |r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \]

\[\approx \frac{1}{(2q_0)^2} \]
Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[
\begin{align*}
 r_{slab} &= \frac{r_{01} \left(1 - p^2\right)}{1 - r_{01}^2 p^2} \\
 &\approx r_{01} \left(1 - p^2\right) \\
 &= r_{01} \left(1 - e^{iQ\Delta}\right)
\end{align*}
\]

Since \(Q\Delta \ll 1\) for a thin slab

\[
|r_{01}| \ll 1 \quad \alpha > \alpha_c
\]

\[
\begin{align*}
 q &\gg 1 \\
 r_{01} &= \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \\
 &\approx \frac{1}{(2q_0)^2} = \left(\frac{Q_c}{2Q_0}\right)^2
\end{align*}
\]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[
 r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \\
 \approx r_{01} (1 - p^2) \\
 = r_{01} \left(1 - e^{iQ\Delta} \right) \\
 r_{slab} \approx \left(\frac{Q_c}{2 Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right)
\]

\[
 q \gg 1 \quad |r_{01}| \ll 1 \quad \alpha > \alpha_c \\
 r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \\
 \approx \frac{1}{(2q_0)^2} = \left(\frac{Q_c}{2 Q_0} \right)^2
\]

Since \(Q_\Delta \ll 1 \) for a thin slab.
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01} (1 - p^2) = r_{01} \left(1 - e^{iQ\Delta}\right) \]

\[r_{slab} \approx \left(\frac{Q_c}{2Q_0}\right)^2 \left(1 - e^{iQ\Delta}\right) \]

\[r_{slab} = -\frac{16\pi \rho r_o}{4Q^2} e^{iQ\Delta/2} \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2}\right) \]

\[q \gg 1 \quad |r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{q_0 + q_1} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{1}{(2q_0)^2} = \left(\frac{Q_c}{2Q_0}\right)^2 \]
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

\[
 r_{slab} = \frac{r_{01} \left(1 - p^2 \right)}{1 - r_{01}^2 p^2} \\
 \approx r_{01} \left(1 - p^2 \right) \\
 = r_{01} \left(1 - e^{iQ\Delta} \right) \\
 r_{slab} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right)
\]

Since \(Q\Delta \ll 1 \) for a thin slab

\[
 r_{slab} = -\frac{16\pi \rho r_0}{4Q^2} e^{iQ\Delta/2} \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2} \right) \\
 = -i \left(\frac{4\pi \rho r_0 \Delta}{Q} \right) \frac{\sin(Q\Delta/2)}{Q\Delta/2} e^{iQ\Delta/2}
\]

Where

- \(q \gg 1 \)
- \(\left| r_{01} \right| \ll 1 \)
- \(\alpha > \alpha_c \)
- \(r_{01} = \frac{q_0 - q_1}{q_0 + q_1} \frac{q_0 + q_1}{(q_0 + q_1)^2} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{1}{(2q_0)^2} = \left(\frac{Q_c}{2Q_0} \right)^2 \)
Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[r_{slab} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right) \]

\[r_{slab} = -\frac{16\pi \rho r_0}{4Q^2} e^{iQ\Delta/2} \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2} \right) \]

\[= -i \left(\frac{4\pi \rho r_0 \Delta}{Q} \right) \frac{\sin(Q\Delta/2)}{Q\Delta/2} e^{iQ\Delta/2} \]

Since \(Q\Delta \ll 1 \) for a thin slab
Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]
\[\approx r_{01} (1 - p^2) \]
\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]
\[r_{slab} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right) \]
\[r_{slab} = -\frac{16\pi \rho r_0}{4Q^2} e^{iQ\Delta/2} \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2} \right) \]
\[= -i \left(\frac{4\pi \rho r_0 \Delta}{Q} \right) \frac{\sin(Q\Delta/2)}{Q\Delta/2} e^{iQ\Delta/2} \]

Since \(Q\Delta \ll 1 \) for a thin slab
Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the “kinematical” regime.

\[
 r_{\text{slab}} = \frac{r_{01} \left(1 - p^2 \right)}{1 - r_{01}^2 p^2} \\
 \approx r_{01} \left(1 - p^2 \right) \\
 = r_{01} \left(1 - e^{iQ\Delta} \right)
\]

\[
 r_{\text{slab}} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right)
\]

\[
 r_{\text{slab}} = -\frac{16\pi \rho r_o}{4Q^2} e^{iQ\Delta/2} \left(e^{iQ\Delta/2} - e^{-iQ\Delta/2} \right) \\
 = -i \left(\frac{4\pi \rho r_o \Delta}{Q} \right) \frac{\sin(Q\Delta/2)}{Q\Delta/2} e^{iQ\Delta/2} \approx -i \frac{\lambda \rho r_o \Delta}{\sin \alpha} = r_{\text{thin slab}}
\]

Since \(Q\Delta \ll 1 \) for a thin slab
N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).
Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer
N repetitions of a bilayer of thickness \(\Lambda \) composed of two materials, \(A \) and \(B \) which have a density contrast \((\rho_A > \rho_B)\).

\(r_1 \) is the reflectivity of a single bilayer

\(\beta \) is the average absorption per bilayer
N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

$\zeta = Q\Lambda/2\pi$ is a dimensionless parameter related to the phase shift of a single bilayer.

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

$\zeta = Q\Lambda/2\pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$r_N(\zeta) = \sum_{\nu=0}^{N-1} r_1(\zeta)e^{i2\pi\zeta\nu}e^{-\beta\nu}$$
Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

$\zeta = Q\Lambda/2\pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$r_N(\zeta) = \sum_{\nu=0}^{N-1} r_1(\zeta)e^{i2\pi\zeta\nu}e^{-\beta\nu} = r_1(\zeta)\frac{1 - e^{i2\pi\zeta N}e^{-\beta N}}{1 - e^{i2\pi\zeta}e^{-\beta}}$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components.
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

\[\rho \rightarrow \rho_{AB} = \rho_A - \rho_B \]
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

\[\rho \rightarrow \rho_{AB} = \rho_A - \rho_B \]

\[r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Gamma\Lambda/2}^{+\Gamma\Lambda/2} e^{i2\pi \zeta z/\Lambda} dz \]
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$\rho \rightarrow \rho_{AB} = \rho_A - \rho_B$$

$$r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Gamma \Lambda/2}^{+\Gamma \Lambda/2} e^{i2\pi \zeta z/\Lambda} dz$$

$$= -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \frac{\Lambda}{i2\pi \zeta} \left[e^{i\pi \zeta \Gamma} - e^{-i\pi \zeta \Gamma} \right]$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$\rho \rightarrow \rho_{AB} = \rho_A - \rho_B$$

$$r_1(\zeta) = -i \frac{\lambda r_0 \rho_{AB}}{\sin \theta} \int_{-\Gamma \Lambda/2}^{+\Gamma \Lambda/2} e^{i2 \pi \zeta z/\Lambda} dz$$

$$= -i \frac{\lambda r_0 \rho_{AB}}{\sin \theta} \frac{\Lambda}{i2 \pi \zeta} \left[e^{i \pi \zeta \Gamma} - e^{-i \pi \zeta \Gamma} \right]$$

$$e^{ix} - e^{-ix} = 2i \sin x$$

$$Q = 4\pi \sin \theta / \lambda = 2\pi \zeta / \Lambda$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$\rho \quad \rightarrow \quad \rho_{AB} = \rho_A - \rho_B$$

$$r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Lambda \zeta/2}^{+\Lambda \zeta/2} e^{i2\pi \zeta z/\Lambda} \, dz$$

$$= -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \frac{\Lambda}{i2\pi \zeta} \left[e^{i\pi \zeta \Gamma} - e^{-i\pi \zeta \Gamma} \right]$$

$$Q = 4\pi \sin \theta / \lambda = 2\pi \zeta / \Lambda$$

$$r_1 = -2i r_o \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta}$$
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i r_o \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$r_N = -2i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}}$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_A and a fraction $(1 - \Gamma)$ through n_B.
The total reflectivity for the multilayer is therefore:

\[r_N = -2i \rho_{AB} \theta \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda / \sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\frac{\Lambda}{\sin \theta} \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is

\[\beta = 2 \left[\frac{\mu_A}{2} \frac{\Gamma \Lambda}{\sin \theta} + \frac{\mu_B}{2} \frac{(1 - \Gamma)\Lambda}{\sin \theta} \right] \]
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2 i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda/\sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is

\[\beta = 2 \left[\frac{\mu_A}{2} \frac{\Gamma \Lambda}{\sin \theta} + \frac{\mu_B}{2} \frac{(1 - \Gamma) \Lambda}{\sin \theta} \right] = \frac{\Lambda}{\sin \theta} [\mu_A \Gamma + \mu_B (1 - \Gamma)] \]
Reflectivity Calculation

When \(\zeta = \frac{Q \Lambda}{2 \pi} \) is an integer, we have peaks.

As \(N \) becomes larger, these peaks would become more prominent.

This is effectively a diffraction grating for x-rays.

Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors.

C. Segre (IIT)
PHYS 570 - Spring 2015
February 05, 2015 13 / 20
Reflectivity Calculation

- When $\zeta = Q\Lambda / 2\pi$ is an integer, we have peaks

10 bilayers of W/Si
$\Delta_W / \Delta_{Si} = 10\text{Å} / 40\text{Å}$
When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks.

As N becomes larger, these peaks would become more prominent.

Reflectivity Calculation

$R_{\text{Multilayer}}$

\[\Delta W/\Delta_{\text{Si}} = 10\text{Å}/40\text{Å} \]

10 bilayers of W/Si

$Q (\text{Å}^{-1})$
Reflectivity Calculation

- When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks.
- As N becomes larger, these peaks would become more prominent.
- This is effectively a diffraction grating for x-rays.

10 bilayers of W/Si
$\Delta W/\Delta Si = 10\text{Å}/40\text{Å}$
Reflectivity Calculation

- When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks

- As N becomes larger, these peaks would become more prominent

- This is effectively a diffraction grating for x-rays

- Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors

$R_{\text{Multilayer}}$

$\Delta W/\Delta_{Si} = 10\text{Å}/40\text{Å}$

10 bilayers of W/Si

$Q (\text{Å}^{-1})$

10^0

10^{-2}

10^{-4}

0 0.2

C. Segre (IIT)
Slab - Multilayer Comparison

Δ = 68 Å

10 bilayers of W/Si

Δ_w/Δ_{Si} = 10Å/40Å
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer.
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take \(\Delta_j \) as the thickness of each layer and \(n_j = 1 - \delta_j + i\beta_j \) as the index of refraction of each layer. Because of continuity, \(k_{xj} = k_x \) and therefore, we can compute the z-component of \(\vec{k}_j \)

\[
\begin{align*}
\vec{k}_z & = k_z \\
\vec{k}_j & = \sqrt{Q_j^2 - 8k^2\delta_j + 8ik^2\beta_j}
\end{align*}
\]
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer.

Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j

$$k_{zj}^2 = (n_jk)^2 - k_x^2$$
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer. Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j

$$k_{zj}^2 = (n_j k)^2 - k_x^2 = (1 - \delta_j + i\beta_j)^2 k^2 - k_x^2$$
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer.

Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j

$$k_{zj}^2 = (n_jk)^2 - k_x^2$$
$$= (1 - \delta_j + i\beta_j)^2 k^2 - k_x^2$$
$$\approx k_z^2 - 2\delta_jk^2 + 2i\beta_jk^2$$

\[Q_j = 2k_j\sin \alpha_j = 2k_zj = \sqrt{Q_j^2 - 8k^2\delta_j + 8i\beta_jk^2} \]
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer. Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j:

$$k_{zj}^2 = (n_j k)^2 - k_x^2$$
$$= (1 - \delta_j + i\beta_j)^2 k^2 - k_x^2$$
$$\approx k_z^2 - 2\delta_j k^2 + 2i\beta_j k^2$$

and the wavevector transfer in the j^{th} layer.
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer. Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j

\[
\begin{align*}
 k^2_{zj} &= (n_jk)^2 - k_x^2 \\
 &= (1 - \delta_j + i\beta_j)^2 k^2 - k_x^2 \\
 &\approx k^2_z - 2\delta_jk^2 + 2i\beta_jk^2
\end{align*}
\]

$Q_j = 2k_j \sin \alpha_j = 2k_{zj}$

and the wavevector transfer in the j^{th} layer
Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_j as the thickness of each layer and $n_j = 1 - \delta_j + i\beta_j$ as the index of refraction of each layer. Because of continuity, $k_{xj} = k_x$ and therefore, we can compute the z-component of \vec{k}_j

\[
k_{zj}^2 = (n_j k)^2 - k_x^2
= (1 - \delta_j + i\beta_j)^2 k^2 - k_x^2
\approx k_z^2 - 2\delta_j k^2 + 2i\beta_j k^2
\]

\[
Q_j = 2k_j \sin \alpha_j = 2k_{zj}
= \sqrt{Q^2 - 8k^2 \delta_j + 8ik^2 \beta_j}
\]

and the wavevector transfer in the j^{th} layer
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j + 1$, not including multiple reflections is

The recursive relation can be seen from the calculation of reflectivity of the next layer up

$$r_{N-2}, N-1 = r'_{N-2}, N-1 + r_{N-1}, N p_2^{N-1} + r'_{N-2}, N-1 r_{N-1}, N p_2^{N-1}$$
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j + 1$, not including multiple reflections is

$$r'_{j,j+1} = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}}$$
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j + 1$, not including multiple reflections is

$$r_{j,j+1}' = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}}$$

Now start calculating the reflectivity from the bottom of the N^{th} layer, closest to the substrate, where multiple reflections are not present.
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the N^{th} layer, closest to the substrate, where multiple reflections are not present

\[
 r'_{j,j+1} = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}}
\]

\[
 r'_{N,\infty} = \frac{Q_N - Q_\infty}{Q_N + Q_\infty}
\]
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j + 1$, not including multiple reflections is

$$r_{j,j+1}' = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}}$$

Now start calculating the reflectivity from the bottom of the N^{th} layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the N^{th} layer, including multiple reflections is now calculated (note no prime!)

$$r_{N,\infty}' = \frac{Q_N - Q_\infty}{Q_N + Q_\infty}$$
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

\[r'_{j,j+1} = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}} \]

Now start calculating the reflectivity from the bottom of the N^{th} layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the N^{th} layer, including multiple reflections is now calculated (note no prime!)

\[r'_{N,\infty} = \frac{Q_N - Q_\infty}{Q_N + Q_\infty} \]

\[r_{N-1,N} = \frac{r'_{N-1,N} + r'_{N,\infty}p_N^2}{1 + r'_{N-1,N}r'_{N,\infty}p_N^2} \]
Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

$$r'_{j,j+1} = \frac{Q_j - Q_{j+1}}{Q_j + Q_{j+1}}$$

Now start calculating the reflectivity from the bottom of the N^{th} layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the N^{th} layer, including multiple reflections is now calculated (note no prime!)

$$r'_{N,\infty} = \frac{Q_N - Q_\infty}{Q_N + Q_\infty}$$

The recursive relation can be seen from the calculation of reflectivity of the next layer up

$$r_{N-1,N} = \frac{r'_{N-1,N} + r'_{N,\infty}p_N^2}{1 + r'_{N-1,N}r'_{N,\infty}p_N^2}$$

$$r_{N-2,N-1} = \frac{r'_{N-2,N-1} + r_{N-1,N}p_{N-1}^2}{1 + r'_{N-2,N-1}r_{N-1,N}p_{N-1}^2}$$
Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions. Parratt calculation gives $R_{\text{Par}} = 1$ as $Q \to 0$ while kinematical diverges ($R_{\text{Kin}} \to \infty$).

Parratt peaks shifted to slightly higher values of Q. Peaks in kinematical calculation are somewhat higher reflectivity than true value.
Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.
Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{Par} = 1$ as $Q \to 0$ while kinematical diverges ($R_{Kin} \to \infty$).
Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{Par} = 1$ as $Q \to 0$ while kinematical diverges ($R_{Kin} \to \infty$).

Parratt peaks shifted to slightly higher values of Q
Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{Par} = 1$ as $Q \to 0$ while kinematical diverges ($R_{Kin} \to \infty$).

Parratt peaks shifted to slightly higher values of Q

Peaks in kinematical calculation are somewhat higher reflectivity than true value.
Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.
Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit ($Q > Q_c$).
Graded Interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit ($Q > Q_c$).

The density profile of the interface can be described by the function $f(z)$ which approaches 1 as $z \to \infty$.
Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit \((Q > Q_c)\).

The density profile of the interface can be described by the function \(f(z)\) which approaches 1 as \(z \to \infty\).

The reflectivity can be computed as the superposition of the reflectivity of a series of infinitesimal slabs of thickness \(dz\) at a depth \(z\).
The differential reflectivity from a slab of thickness dz at depth z is:

$$
\delta r(Q) = -i Q^2 c^4 Q f(z) dz.
$$

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient $R(Q)$:

$$
R(Q) = \left| \int_{-\infty}^{\infty} \left(\frac{df}{dz} \right) e^{iQz} dz \right|^2.
$$
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q^2}{4Q} f(z) dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q^2}{4Q} f(z) dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

integrating, to get the entire reflectivity
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q^2_c}{4Q} f(z) dz \]

\[r(Q) = -i \frac{Q^2_c}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

integrating, to get the entire reflectivity
The differential reflectivity from a slab of thickness dz at depth z is:

$$\delta r(Q) = -i \frac{Q^2}{4Q} f(z) dz$$

integrating, to get the entire reflectivity

$$r(Q) = -i \frac{Q^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz$$

integrating by parts simplifies
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q_c^2}{4Q} f(z) dz \]

\[r(Q) = -i \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz \]

\[= i \frac{1}{iQ} \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

integrating, to get the entire reflectivity

integrating by parts simplifies

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

\[R(Q) = \left| \int_{-\infty}^{\infty} (df/dz) e^{iQz} dz \right| ^2 \]
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q^2}{4Q} f(z) dz \]

\[r(Q) = -i \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz \]

integrating, to get the entire reflectivity

generating by parts simplifies

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

\[= i \frac{1}{iQ} \frac{Q^2}{4Q} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz \]

\[= \frac{Q_c^2}{4Q^2} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz \]
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q_c^2}{4Q} f(z) dz \]

\[r(Q) = -i \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz \]

\[= i \frac{1}{iQ} \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz \]

\[= \frac{Q_c^2}{4Q^2} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

integrating, to get the entire reflectivity

integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, \(r_F(Q) \) when \(q \gg 1 \).
Reflectivity of a Graded Interface

\[
\delta r(Q) = -i \frac{Q_c^2}{4Q} f(z) dz
\]

\[
r(Q) = -i \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} dz
\]

\[
= i \frac{1}{iQ} \frac{Q_c^2}{4Q} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz
\]

\[
= \frac{Q_c^2}{4Q^2} \int_{-\infty}^{\infty} f'(z) e^{iQz} dz
\]

The differential reflectivity from a slab of thickness \(dz\) at depth \(z\) is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflectivity for an interface, \(r_F(Q)\) when \(q \gg 1\), the integral is the Fourier transform of the density gradient, \(\phi(Q)\)
Reflectivity of a Graded Interface

\[\delta r(Q) = -i \frac{Q^2}{4Q} \int_{-\infty}^{\infty} f(z) e^{iQz} \, dz \]

The differential reflectivity from a slab of thickness \(dz \) at depth \(z \) is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflectivity for an interface, \(r_F(Q) \) when \(q \gg 1 \), the integral is the Fourier transform of the density gradient, \(\phi(Q) \)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

\[\frac{R(Q)}{R_F(Q)} = \left| \int_{-\infty}^{\infty} \left(\frac{df}{dz} \right) e^{iQz} \, dz \right|^2 \]
The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

\[f(z) = \text{erf}\left(\frac{z}{\sqrt{2\sigma}}\right) = \frac{1}{\sqrt{\pi}} \int_0^{z/\sqrt{2\sigma}} e^{-t^2} dt \]

Or more accurately,

\[R(Q) = R_F(Q) e^{-Q^2/\sigma^2} = R_F(Q) e^{-QQ'/\sigma^2} \]

\[Q = k \sin \theta, \quad Q' = k' \sin \theta' \]
The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

\[f(z) = \text{erf}\left(\frac{z}{\sqrt{2\sigma}}\right) = \frac{1}{\sqrt{\pi}} \int_{0}^{z/\sqrt{2\sigma}} e^{-t^2} \, dt \]

the gradient of the error function is simply a Gaussian

\[\frac{df(z)}{dz} = \frac{d}{dz} \text{erf}\left(\frac{z}{\sqrt{2\sigma}}\right) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{1}{2} \frac{z^2}{\sigma^2}} \]
The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

\[f(z) = \text{erf}(\frac{z}{\sqrt{2}\sigma}) = \frac{1}{\sqrt{\pi}} \int_0^{z/\sqrt{2}\sigma} e^{-t^2} dt \]

the gradient of the error function is simply a Gaussian

\[\frac{df(z)}{dz} = \frac{d}{dz} \text{erf}(\frac{z}{\sqrt{2}\sigma}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{z^2}{\sigma^2}} \]

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives.

\[R(Q) = R_F(Q)e^{-Q^2\sigma^2} \]
The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

\[f(z) = \text{erf}\left(\frac{z}{\sqrt{2\sigma}}\right) = \frac{1}{\sqrt{\pi}} \int_0^{z/\sqrt{2\sigma}} e^{-t^2} \, dt \]

the gradient of the error function is simply a Gaussian

\[\frac{df(z)}{dz} = \frac{d}{dz} \text{erf}\left(\frac{z}{\sqrt{2\sigma}}\right) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \frac{z^2}{\sigma^2}} \]

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

\[R(Q) = R_F(Q)e^{-Q^2\sigma^2} = R_F(Q)e^{-QQ'\sigma^2} \]
The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

\[f(z) = \text{erf}(\frac{z}{\sqrt{2\sigma}}) = \frac{1}{\sqrt{\pi}} \int_0^{z/\sqrt{2\sigma}} e^{-t^2} dt \]

the gradient of the error function is simply a Gaussian

\[\frac{df(z)}{dz} = \frac{d}{dz} \text{erf}(\frac{z}{\sqrt{2\sigma}}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{z^2}{\sigma^2}} \]

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

\[R(Q) = R_F(Q)e^{-Q^2\sigma^2} = R_F(Q)e^{-QQ'\sigma^2} \]

\[Q = k \sin \theta, \quad Q' = k' \sin \theta' \]