Lattice relaxation in Zn_{1-x}Cd_xS binary alloy : An Extended X-ray Absorption Fine Structure (EXAFS) Study

Soham Mukherjee¹, Angshuman Nag¹, Pralay K. Santra¹, Mali Balasubramanian², Soma Chattopadhyay^{3,4}, Tomohiro Shibata^{3,4}, Franz Schaefers⁵, V. Kocevski⁶, J. Rusz⁶, C. Gerard⁶, O. Eriksson⁶, C.U. Segre⁴, and D.D. Sarma^{1,6}

> ¹Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India ²X-ray Science Division, Argonne National Laboratory, Argonne, IL -60439, USA ³ MRCAT, Sector 10, Bldg 433B, Argonne, National Laboratory, Argonne, IL 60439 USA ⁴ CSRRI & Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 USA ⁵ Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany ⁶ Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

of an alloy and the concentrations of the constituent end members; Thus, lattice parameters (a) of an alloy of the type $AB_{x}C_{l-x}$ can be explained as a linear sum of its constituent members (AB and AC) in respective proportions

$$a_{AB_xC_{1-x}} = x.a_{AB} + (1-x).a_{AC}$$

Applicable to a wide range of alloys belonging to different crystal systems and different space groups

- **Trimodal distribution of cation-cation distances and angles shows with much stronger relaxation**

distribution exists

towards the virtual wurtzite crystal lattice owing to random alloying at the substituted cationic sublattice

Zn-S and Cd-S correlations in third shell approach each other very closely and extent of dilation almost coincides with the average crystal line

> Lattice relaxation differentially increases with increasing distance of the scattering atom from the absorbing atom, finally merging with the virtual description beyond the third coordination shell

> Results from *ab initio* calculations on the systems are in good agreement with EXAFS results