In situ characterization of battery materials using x-ray absorption spectroscopy

Carlo Segre

Physics Department & Center for Synchrotron Radiation Research and Instrumentation Illinois Institute of Technology

May 22, 2018

Outline

- Motivation
- XAS experiments at MRCAT
- Application of XAS to batteries
- In situ Ni@Co core shell cathode
- Sn_4P_3 /graphite composite anode
- A look to the future

Why x-ray absorption spectroscopy?

X-ray absorption spectroscopy provides element-specific view of both crystalline and amorphous phases with time resolution relevant to battery studies

Ideal for study of degradation mechanisms and structural reversibility

The XAS experiment

Carlo Segre - Illinois Tech

2018 NSLS II User Meeting

May 22, 2018 4 / 24

Battery chemistries accessible to XAFS

Edma

Cathode materials:

- Ni(OH)₂@Co(OH)₂
- MnO₂
- LiCoO₂
- Li_{1.2}(NiMnCo)_{0.8}O₂
- Li_{1.2}(MnNiFe)_{0.8}O₂
- Li₃V₂(PO₄)₃
- LiFePO₄

Anode materials:

Fe₂O₃

ZnO

- MoS₂
- Sn
- SnO_2
- Sn₃O₂(OH)₂
- Sn₄P₃

Luge	Lifergy
Li	0.055 keV
V	5.465 keV
Mn	6.539 keV
Fe	7.112 keV
Co	7.709 keV
Ni	8.333 keV

Li edge not directly accessible and 3d element energies challenging for *in situ* experiments (must use fluorescence).

Edge	Energy
Р	2.145 keV
S	2.472 keV
Fe	7.112 keV
Zn	9.659 keV
Мо	20.00 keV
Sn	29.20 keV

P and S edges too low for non-vacuum experiments, Zn, Fe good in fluorescence, Mo and Sn ideal for *in situ* experiments.

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim 4\,min)$

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim 4 \min$)

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim4\,min)$

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim 4 \min$)

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim 4 \min$)

ID Line

XAFS (4 keV - 65 keV)

Continuous scan (< $1 \min$)

Very dilute samples

BM Line

XAFS (4 keV - 32 keV)

Continuous scan ($\sim 4 \min$) SDD for dilute samples

Ni(OH)₂ for nanofluid flow cathodes

 $Co(OH)_2$ is a common additive to $Ni(OH)_2$ cathode materials

 $Co(OH)_2$ improves electrical conductivity but is not considered to contribute to the reversible capacity

Coat Ni(OH)₂ nanoparticles with varying thickness of $Co(OH)_2$

Optimal $Co(OH)_2$ coating shows nearly theoretical pure Ni(OH)_2 capacity

E. Moazzen, E.V. Timofeeva, and C.U Segre, "Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode," *Electrochim. Acta* **258**, 684-693 (2017).

$Ni(OH)_2@Co(OH)_2$ in situ XANES

Oxidation of $Co(OH)_2$ begins even before charging current is applied

$Ni(OH)_2@Co(OH)_2$ in situ EXAFS

k (Å-1) 2 b) 2.1 χ(k)| (Å⁻²) 1.4 0.7 -0 -2.1 -2.8 2.8 2.1 Ee[X(R)] (Å 0.0 0.0 1.4 0.0 0.0 0.0 1.4 -1.4 2.8 2.4 2.0 (F) (Å) (Å) 1.6 1.2 0.8 0.4 0. 2 R (Å)

All fits performed with single parameter and endpoint spectra

Oxidized state shows shorter and more ordered Co-O bonds

$Ni(OH)_2@Co(OH)_2$ in situ EXAFS

All fits performed with single parameter and endpoint spectra

Oxidized state shows shorter and more ordered Co-O bonds

Ni(OH)₂@Co(OH)₂ galvanic couple

E. Moazzen, E.V. Timofeeva, and C.U Segre, "Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode," *Electrochim. Acta* **258**, 684-693 (2017).

Initial in situ Sn-based anode EXAFS

 $\rm Li_{22}Sn_5$ has 14 Sn-Li paths with distance of 3.4 Å or less. Model with three Sn-Li paths at "center of mass" locations

C. Pelliccione, E.V. Timofeeva, and C.U. Segre, "In situ XAS study of the capacity fading mechanism in hybrid $Sn_3O_2(OH)_2$ /graphite battery anode nanomaterials", *Chem. Mater.* **27**, 574-580 (2015).

The Sn lithiation process

0.60V – Sn metal begins to break down and Li appears

0.45V - number of Lireaches 11 and stabilizes at near full $Li_{22}Sn_5$

However, Sn fades rapidly due to electric conductivity loss. What can be improved?

C.J. Pelliccione, E.V. Timofeeva, and C.U. Segre, "Potential-resolved in situ x-ray absorption spectroscopy study of Sn and SnO₂ nanomaterial anodes for lithium-ion batteries," *J. Phys. Chem. C* **120**, 5331-5339 (2016).

$\mathsf{Sn}_4\mathsf{P}_3/\mathsf{graphite}\ \mathsf{composite}\ \mathsf{anode}$

 ${\rm Sn_4P_3}$ synthesized by high energy ball milling, then ball milled again with graphite to obtain composite

Theoretically could transfer 9 or more electrons upon lithiation

 Sn_4P_3 /graphite composite shows stable, reversible capacity of 610 mAh/g for 100 cycles at C/2 compared to rapidly fading pure Sn_4P_3 material.

How does the lithiation process differ from that of Sn metal?

In situ EXAFS of Sn_4P_3 /graphite

Results for *in situ* coin cell are close to the capacity of the unmodified cell at C/4, indicating good reversibility by the 3^{rd} cycle.

Third cycle comparison

By the third lithiation and third delithiation, the difference between pure Sn_4P_3 and the Sn_4P_3 /graphite composite is clear.

Even at the 100^{th} delithiation, the Sn₄P₃/graphite composite measured *ex situ* is showing the same features as at the 3rd cycle.

$Sn_4P_3/graphite\ initial\ cycling$

OCV spectrum fits well to Sn₄P₃ structure with an additional Sn-O path

 ${\rm Sn_4P_3}$ structure persists through first two cycles with possible enhancement of the Sn-Sn path at 2.6 Å

$Sn_4 \mathsf{P}_3/graphite \ reversible \ cycling$

On third lithiation (charge) the Sn-P path is gone and only Sn-Li remains Delithiation (discharge) produces Sn-P and Sn-Sn paths which are not those of Sn₄P₃ but are reversible

Carlo Segre - Illinois Tech

Example fits

The EXAFS modeling of the Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3^{rd} delithiation, provides bond distances and coordination numbers

The Sn-O peak in the OCV spectrum is primarily due to the ball milling process which inevitably introduces some oxygen.

Carlo Segre - Illinois Tech

2018 NSLS II User Meeting

Example fits

The EXAFS modeling of the Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3^{rd} delithiation, provides bond distances and coordination numbers

By the 3^{rd} lithiated state, the EXAFS is dominated by Sn-Li paths at 2.7 Å and 3.0 Å.

Example fits

The EXAFS modeling of the Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3^{rd} delithiation, provides bond distances and coordination numbers

At the 3^{rd} delithiation, the Sn-P path reappears but at a shorter distance, in an amorphous SnP_x phase.

Carlo Segre - Illinois Tech

Sn_4P_3 /graphite path lengths

Sn-Sn distance close to those of metallic Sn indicate the presence of smll Sn clusters which may never fully lithiate

Longer Sn-P distance characteristic of Sn_4P_3 is gone after initial conversion to the SnP_x amorphous phase is complete

Only 2 Sn-Li paths present in this material

Sn-O distances remain constant, likely indicative of surface contamination

Sn_4P_3 /graphite coordination numbers

Sn-O neighbors decrease quickly, remaining small and partially reversible up to 100 cycles

Sn-P reversible after initial conversion with a slow decrease which correlates to capacity loss

Very small Sn-Sn metallic clusters present throughout

The \sim 3.3 Sn-P neighbors in the delithiated state indicate a possibly tetrahedral Sn coordination in SnP_x

15 Sn-Li neighbors correspond to nearly full lithiation and fade with capacity.

Third cycle dynamic snapshot

Y. Ding et al., "In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries," *Adv. Energy Mater.* **2017**, 1702134 (2017).

Collaborators & Acknowledgements

Initial Sn-based anode studies Chris Pelliccione – Illinois Tech

Sn₄P₃/graphite composite Yujia Ding – Illinois Tech Zhefei Li – Ohio University

Ni@Co core-shell aqueous cathode Elahe Moazzen – Illinois Tech

ILLINOIS INSTITUTE OF TECHNOLOGY

Duchossois Leadership Program at Illinois Tech