In situ characterization of battery materials using x-ray absorption spectroscopy

Carlo Segre

Physics Department & Center for Synchrotron Radiation Research and Instrumentation Illinois Institute of Technology

March 6, 2018

Outline & Motivation

• Motivation

X-ray absorption spectroscopy provides element-specific view of both crystalline and amorphous phases with time resolution relevant to battery studies

Outline & Motivation

- Motivation
- X-ray absorption spectroscopy
- Application of XAS to batteries
- Ex situ study Mn-containing cathode
- In situ Ni@Co core shell cathode
- Sn_4P_3 /graphite composite anode

X-ray absorption spectroscopy provides element-specific view of both crystalline and amorphous phases with time resolution relevant to battery studies

- $I_o =$ incident intensity
- I_t = transmitted intensity
- I_f = fluorescence intensity
- $\mu(E)$ = absorption coefficient

O

V

- $I_o =$ incident intensity
- I_t = transmitted intensity
- I_f = fluorescence intensity
- $\mu(E)$ = absorption coefficient

$$\mu(E) \propto \ln\left(rac{l_o}{l_t}
ight) \propto rac{l_f}{l_o}$$

$$\mu(E) \propto \ln\left(\frac{l_o}{l_t}\right) \propto \frac{l_f}{l_o}$$

Electro

Lithiun

Spacer

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin[2kR_j + \delta_j(k)]$$

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin[2kR_j + \delta_j(k)]$$

Determine Z, R, N, and σ^2 from model with computed f(k), $\delta(k)$, and $\lambda(k)$

Battery chemistries accessible to XAFS

Cathode materials:

- Ni(OH)₂@Co(OH)₂
- MnO₂
- LiCoO₂
- Li_{1.2}(NiMnCo)_{0.8}O₂
- Li_{1.2}(MnNiFe)_{0.8}O₂
- Li₃V₂(PO₄)₃
- LiFePO₄

Anode materials:

• Fe ₂ O ₃

- ZnO
- MoS₂
- Sn
- SnO₂
- Sn₄P₃

Edge	Energy
Li	0.055 keV
V	5.465 keV
Mn	6.539 keV
Fe	7.112 keV
Co	7.709 keV
Ni	8.333 keV

Li edge not directly accessible and 3d elements must be measured in fluorescence for *in situ* experiments.

Edge	Energy
Р	2.145 keV
S	2.472 keV
Fe	7.112 keV
Zn	9.659 keV
Мо	20.00 keV
Sn	29.20 keV

P and S edges too low for nonvacuum experiments, Zn good in fluorescence, Mo and Sn ideal for *in situ* experiments.

$Li_{1.2}Mn_{0.5}Ni_{0.2}Fe_{0.1}O_2 \text{ cathode}$

Choose composition from literature reports

Sol-gel synthesized nanoparticles maximum capacity for 4.8 V cycling

$Li_{1.2}Mn_{0.5}Ni_{0.2}Fe_{0.1}O_2 \ \text{structure}$

best fit requires both structures

LiCoO₂-like rhombohedral

 Li_2MnO_3 monoclinic

$Li_{1.2}Mn_{0.5}Ni_{0.2}Fe_{0.1}O_2 \text{ ex situ EXAFS}$

S. Aryal et al., "Structural studies of capacity activation and reduced voltage fading in Li-rich, Mn-Ni-Fe composite oxide cathode," *J. Electrochem. Soc.* **165**, A71-A78 (2018)

Carlo Segre - Illinois Tech

2018 APS March Meeting

$Ni(OH)_2@Co(OH)_2$ in situ XANES

$Ni(OH)_2@Co(OH)_2$ in situ EXAFS

10

R (Å)

$Ni(OH)_2@Co(OH)_2$ in situ EXAFS

Ni(OH)₂@Co(OH)₂ galvanic couple

E. Moazzen et al., "Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode," *Electrochim. Acta* **258**, 684-693 (2017).

Carlo Segre - Illinois Tech

2018 APS March Meeting

$Sn_4 P_3/graphite \ composite \ anode$

V

Pure Sn_4P_3 synthesized by high energy ball milling, then ball milled with graphite to obtain composite

Theoretically 9+ electrons per formula unit

Third cycle comparison

V

Third lithiation, third delithiation, and 100^{th} delithiation: clear difference between pure Sn₄P₃ and the Sn₄P₃/graphite composite

Carlo Segre - Illinois Tech

Example fits

12

 Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3^{rd} delithiation

Carlo Segre - Illinois Tech

0.0

0

1

2

3 R (Å)

Example fits

12

 Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3rd delithiation

Carlo Segre - Illinois Tech

3rd Lithiation

0 0.2

 $k^2\chi(k)~(\dot{A}^{-2})$

Re[\chi(R)] (Å⁻³) 0.0 -0.1

χ(R) (Å⁻³)

0.0

-0.2

0.1

0.1

0.0

0

1

k (Å-1)

2

3 R (Å)

Example fits

12

 Sn_4P_3 /graphite electrode at OCV, 3^{rd} lithiation, and 3^{rd} delithiation

Carlo Segre - Illinois Tech

0.2 0.0 -0.2 -0.4 Re[χ(R)] (Å⁻³) 0.2 0.0 -0.2 -0.4 χ(R) (Å⁻³) 0.2 0.0 2 ່ດ 3 1 R (Å)

k (Å-1)

3rd Delithiation

0 0.4

 $k^2\chi(k)~(\dot{A}^{-2})$

$Sn_4P_3/graphite \ fit \ results$

Third cycle dynamic snapshot

Y. Ding et al., "In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries," *Adv. Energy Mater.* **2017**, 1702134 (2017).

Carlo Segre - Illinois Tech

2018 APS March Meeting

Collaborators & Acknowledgements

Elena Timofeeva – Illinois Tech

Sn₄P₃/graphite composite Yujia Ding – Illinois Tech Zhefei Li – Ohio University

Ni@Co core-shell aqueous cathode Elahe Moazzen – Illinois Tech

 $Li_{1+x}(MnNiFe)_{1-x}O_2$ cathode materials Shankar Aryal – Illinois Tech

Duchossois Leadership Program at Illinois Tech