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Outline

• Introduction to CSRRI & MRCAT

• X-ray absorption spectroscopy

• Operando synchrotron fuel cells

• Methanol oxidation on a PtRu catalyst

• Ru@Pt core-shell methanol catalysts

• Sn anodes for Li-ion batteries

• Accelerated capacity fading studies

• “Reversible”Sn4P3/graphite composite anode
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CSRRI People

Tenure-Track Faculty

Carlo Segre – Physics
Grant Bunker – Physics
Jeff Terry – Physics
David Gidalevitz – Physics
Tom Irving – Biology
Andy Howard – Biology
Joseph Orgel – Biology
Adam Hock – Chemistry

Beamline Staff

John Katsoudas – MRCAT
Al Kwiatkowski – MRCAT
Bill Lavender – MRCAT
Weikang Ma – BioCAT
Carrie Clark – BioCAT
Rick Heurich – BioCAT
Mark Vukonich – BioCAT
Zou Finfrock – CLS@APS
Matt Ward – CLS@APS

Research Faculty

Jim Kaduk – Chemistry
Elena Timofeeva – Chemistry
Srinivas Chakravarthy – Biology
Elizabeth Friedman – CoS

Bhoopesh Mishra – Physics
Joshua Wright – Physics
Ali Khounsary – Physics
Derrick Mancini – Physics
Bernhard Adams – Physics
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MRCAT - historical timeline

1993 – MRCAT started with materials physics focus
Notre Dame, Northwestern, Purdue, IIT, Amoco

1995 – Construction begins on Insertion Device line
Univ. of Florida, Argonne/CSE joins

1997 – First light on Insertion Device line

1998 – Argonne/ER joins

2002 – Honeywell, Sandia fund initial Bending Magnet line

2005 – EPA joins

2007 – UOP joins Bending Magnet line buildout begins

2009 – Bending Magnet line operational

Carlo Segre - Illinois Tech Univ. of Iowa - Analytical Chemistry Seminar September 28, 2017 4 / 48



MRCAT - present membership

Current active membership
University of Notre Dame

Illinois Institute of Technology

Argonne Chemical Sci. & Eng.

Argonne Biosciences

Environmental Protection Agency

UOP Honeywell

BP p.l.c.

General users – catalysis
UC Davis, Purdue, Penn State

Illinois, Princeton, UCSB

Rice, LSU, UC Berkeley, Michigan

Wisconsin, Ohio State, MIT, ORNL

NREL, WPAFB, Chicago,

LANL, . . .

ID Line
XAFS (4 keV - 65 keV)

Continuous scan (< 2 min)

Very dilute samples

Microprobe

Microdiffraction

HAXPES

BM Line
XAFS (4 keV - 32 keV)

Continuous scan (∼ 4 min)

SDD for dilute samples

Instrumentation
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The EXAFS experiment

Io = incident intensity
It = transmitted intensity
If = fluorescence intensity

x = sample thickness
µ(E ) = absorption coefficient

It = Ioe
−µ(E)x µ(E )x = ln

(
Io
It

)
µ(E ) ∝ If

Io
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XAS data
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EXAFS analysis
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Methanol oxidation by a PtRu anode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

Anode: 0.02 V vs. SHE

CH3OH + H2O −−→ 6 H + CO2 + 6 e–

Cathode: 1.23 V s. SHE
3
2 O2 + 6 H+ + 6 e– −−→ 3 H2O

Pt surface poisoned by CO

The presence of Ru promotes CO oxidation through a
“bi-functional mechanism”

Pt−(CO)ads + Ru−OH −−→ Pt + RuCO2 + H+ + 2 e–

Carlo Segre - Illinois Tech Univ. of Iowa - Analytical Chemistry Seminar September 28, 2017 9 / 48



Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance
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Continual current growth is due to
methanol oxidation

Ru improves current by removing the
CO which blocks active sites
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Ru EXAFS
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Fit example: -225 mV without methanol
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Fit example: 675 mV without methanol
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Fit example: 675 mV with methanol
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Ru-M paths
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Ru-O/C paths
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Bi-functional mechanism

C. Pelliccione et al., “In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation
mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst” J. Phys. Chem. C 117,
18904 (2013).
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Battery chemistries accessible to XAFS

Cathode materials:

• Ni(OH)2@Co(OH)2
• MnO2

• LiCoO2

• Li1.2(NiMnCo)0.8O2

• Li1.2(MnNiFe)0.8O2

• Li3V2(PO4)3
• LiFePO4

Edge Energy
Li 0.055 keV
V 5.465 keV

Mn 6.539 keV
Fe 7.112 keV
Co 7.709 keV
Ni 8.333 keV

Li edge not directly accessible
and 3d element energies chal-
lenging for in situ experiments.

Anode materials:

• Fe2O3

• ZnO
• MoS2

• Sn
• SnO2

• Sn3O2(OH)2
• Sn4P3

Edge Energy
P 2.145 keV
S 2.472 keV
Fe 7.112 keV
Zn 9.659 keV
Mo 20.00 keV
Sn 29.20 keV

P and S edges too low for non-
vacuum experiments, Zn good
in fluorescence, Mo and Sn
ideal for in situ experiments.
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In situ lithiation of Sn

• In situ box for
non-aqueous
experiments

• Have measured
Sn3O2(OH)2, SnO2,
Sn, ZnO, MoO2 . . .

• Pouch cell simplifies
experiment

• MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes

• Focus on Sn nanoparticles which have rapid failure rate

• Successfully modeled Sn-Li paths in Sn3O2(OH)2 using 3 composite paths
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Sn EXAFS versus potential

0 1 2 3 4 5
0.0

0.2

0.4

0.6

 

 

|
(R

)| 
(Å

-3
)

R (Å)
0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

P
ot

en
tia

l (
V

 v
s 

Li
/L

i+ )

Capacity (mAh/g)

Li22Sn5 has 14 Sn-Li paths with distance 3.4Å or less
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Thes are modeled using three Sn-Li paths at “center of mass” location
Carlo Segre - Illinois Tech Univ. of Iowa - Analytical Chemistry Seminar September 28, 2017 22 / 48



Sn EXAFS versus potential

0 1 2 3 4 5
0.0

0.2

0.4

0.6

 

 

|
(R

)| 
(Å

-3
)

R (Å)
0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

P
ot

en
tia

l (
V

 v
s 

Li
/L

i+ )

Capacity (mAh/g)

Li22Sn5 has 14 Sn-Li paths with distance 3.4Å or less
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The Sn lithiation process
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis pro-
duces evenly distributed
Sn3O2(OH)2 nanoparticles
on graphite nanoplatelets

XRD shows a small amount
of Sn metal in addition to
Sn3O2(OH)2
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

2100

2800

In situ

 

 
C

ap
ac

ity
 (m

A
h/

g)

Cycle Number

 Charge
 Discharge

Ex situ

Carlo Segre - Illinois Tech Univ. of Iowa - Analytical Chemistry Seminar September 28, 2017 26 / 48



In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

C. Pelliccione et al., “In situ XAS study of the capacity fading mechanism in hybrid
Sn3O2(OH)2/graphite battery anode nanomaterials”, Chem. Mater. 27, 574-580 (2015).
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Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball milling, then
ball milled again with graphite to obtain composite

Theoretically could transfer 9 or more electrons upon
lithiation
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Sn4P3/graphite compos-
ite shows stable, re-
versible capacity of 610
mAh/g for 100 cycles at
C/2 compared to rapidly
fading pure Sn4P3 mate-
rial.

How does the lithiation
process differ from that
of Sn metal?
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In situ EXAFS of Sn4P3/graphite
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Results for in situ coin cell are close to the capacity of the unmodified cell at C/4,
indicating good reversibility by the 3rd cycle.
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Third cycle comparison

By the third lithiation and third delithiation, the difference between pure Sn4P3

and the Sn4P3/graphite composite is clear.
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Even at the 100th delithiation, the Sn4P3/graphite composite measured ex situ is
showing the same features as at the 3rd cycle.
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Example fits
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The EXAFS modeling of the
Sn4P3/graphite electrode at
OCV, 3rd lithiation, and 3rd

delithiation, provides bond dis-
tances and coordination num-
bers

The Sn-O peak in the OCV spectrum is primarily due to the ball milling process
which inevitably introduces some oxygen.
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The EXAFS modeling of the
Sn4P3/graphite electrode at
OCV, 3rd lithiation, and 3rd

delithiation, provides bond dis-
tances and coordination num-
bers

By the 3rd fully lithiated state, the EXAFS is dominated by the Sn-Li paths at 2.7
Åand 3.0 Å.
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Example fits
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The EXAFS modeling of the
Sn4P3/graphite electrode at
OCV, 3rd lithiation, and 3rd

delithiation, provides bond dis-
tances and coordination num-
bers

At the 3rd delithiation, the Sn-P path reappears but at a shorter distance, in an
amorphous SnPx phase.
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Sn4P3/graphite path lengths
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ters which may never fully
lithiate

Longer Sn-P distance char-
acteristic of Sn4P3 is gone
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the SnPx amorphous phase
is complete

Only 2 Sn-Li paths present
in this material

Sn-O distances remain con-
stant, likely indicative of
surface contamination
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Sn4P3/graphite coordination numbers

Sn-O neighbors decrease
quickly, remaining small and
partially reversible up to 100
cycles

Sn-P reversible after initial
conversion with a slow de-
crease which correlates to
capacity loss

Very small Sn-Sn metallic
clusters present throughout

The ∼3.3 Sn-P neighbors in
the delithiated state indicate
a possibly tetrahedral Sn co-
ordination in SnPx

15 Sn-Li neighbors corre-
spond to nearly full lithiation
and fade with capacity.
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Third cycle dynamic snapshot
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Keys to Sn4P3/graphite reversibility

Graphite nanoparticle composite

• provides high electronic
conductivity

• inhibits Sn nanoparticle
aggregation

• promotes amorphous SnPx

formation

Reversibility of amorphous SnPx phase
and surrounding Li3P

Structure of initial Sn4P3 material may
be beneficial

Ball milled composites being tested for
Sn, SnO2, and SnS2 nanoparticles

Further improvements to the in-situ
cell needed to make better in situ stud-
ies possible
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Principal collaborators - Thank you!

• Christopher Pelliccione – IIT Physics (Ph.D. student)

• Yujia Ding – IIT Physics (Ph.D. student)

• John Katsoudas – IIT (MRCAT staff)

• Elena Timofeeva – IIT Chemistry

Supported by

• Department of Energy ARPA-e Grant

• Department of Education GAANN Grant

• National Science Foundation MWN Grant

• Duchossois Leadership Program at Illinois Tech
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Nanoelectrofuel flow battery

Suspended electroactive nanoparticles

Advantages of flow batteries

Energy density of solid state

Chemistry agnostic
aqueous or non-aqueous

Initial funding

IIT/Argonne collaboration

Prototype: 1 kWh total energy stored
40 V, C/3 discharge rate

Develop commercialization plan

Carlo Segre - Illinois Tech Univ. of Iowa - Analytical Chemistry Seminar September 28, 2017 41 / 48



Advantages of nanoelectrofuel

initial overhead for
power stack depends on
desired voltage

active material fraction
depends on loading
(50% shown)

beyond 50 kWh, NEF
has higher volumetric ca-
pacity
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Long term vision
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Nanoelectrofuel challenges

• What is the intrinsic performance
of active materials in
nanoparticle form?

• Can suspended nanoparticles be
effectively charged and
discharged during flow?

• How much loading can be
stabilized in suspension?

• Will these nanoelectrofuels be
pumpable and not destroy the
enclosure materials?

• Can the technology be econmical
enough to compete with more
established technologies?

40 V aqueous chemistry stack

25 kWh using 4.5 L of nanoelectrofuel

26 kg stack, 10 kg 50% loaded fluid

70 Wh/kg (compare to 40 Wh/kg for
Pb-acid)
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Initial funding: the RANGE program (2014-2015)

Robust Affordable Next Generation Energy Storage Systems

Develop transformational electro-
chemical energy storage technolo-
gies for electric vehicles (EVs)

• provide greater EV driving
range

• reduce overall weight of the
vehicle

• maximize the overall energy
stored in a vehicle

• enhance safety

• minimize manufacturing costs

• enable greater design
flexibility for manufacturers

22 projects across the United States
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The I-Corps experience

Participated in the I-Corps Energy &
Transportation program sponsored by
Next Energy in Detroit

• initial goal to grow the EV
market by providing a better
battery

• conducted over 60 customer
interviews in 1 month

• complex and interconnected
value supply chain

• 10-20 years to break into the
automotive supply chain!

Electric utility vehicles (EUVs) can
bridge the “valley of death”

• EUV market 5× larger than EV

• simpler vehicles with smaller
value supply chain

• lead-acid batteries must be
replaced every year

Current EUV Market

TAM – $600M

SAM – $300M

SOM – $ 75M
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The first product

EUVs and fork lifts are
already predominantly
electric

batteries replaced at fac-
tory each year

typical motor is 36-40V

4-pack of lead-acid bat-
teries are most common

12-hour charge cycle re-
quired between uses

a perfect match for
our nanoelectrofuel pro-
totype battery
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