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Outline

• Introduction to CSRRI & MRCAT

• X-ray absorption spectroscopy

• Operando synchrotron fuel cells

• Methanol oxidation on a PtRu catalyst

• Ru@Pt core-shell methanol catalysts

• Sn anodes for Li-ion batteries

• Accelerated capacity fading studies

• “Reversible”Sn4P3/graphite composite anode
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MRCAT - historical timeline

1993 – MRCAT started with materials physics focus
Notre Dame, Northwestern, Purdue, IIT, Amoco

1995 – Construction begins on Insertion Device line
Univ. of Florida, Argonne/CSE joins

1997 – First light on Insertion Device line

1998 – Argonne/ER joins

2002 – Honeywell, Sandia fund initial Bending Magnet line

2005 – EPA joins

2007 – UOP joins Bending Magnet line buildout begins

2009 – Bending Magnet line operational
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MRCAT - present membership

Current active membership
University of Notre Dame

Illinois Institute of Technology

Argonne Chemical Sci. & Eng.

Argonne Biosciences

Environmental Protection Agency

UOP Honeywell

BP plc

General users – catalysis
UC Davis, Purdue, Penn State

Illinois, Princeton, UCSB

Rice, LSU, UC Berkeley, Michigan

Wisconsin, Ohio State, MIT, ORNL

NREL, WPAFB, Chicago,

LANL, . . .

ID Line
XAFS (4 keV - 65 keV)

Continuous scan (< 2 min)

Very dilute samples

Microprobe

Microdiffraction

HAXPES

BM Line
XAFS (4 keV - 32 keV)

X-ray lithography

High energy tomography

Instrumentation
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The EXAFS experiment

Io = incident intensity
It = transmitted intensity
If = fluorescence intensity

x = sample thickness
µ(E ) = absorption coefficient

It = Ioe
−µ(E)x µ(E )x = ln

(
Io
It

)
µ(E ) ∝ If

Io

Illinois Institute of Technology Univ. of Illinois at Chicago December 1, 2016 6 / 40
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EXAFS analysis
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Methanol oxidation by a PtRu anode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

Anode: 0.02 V vs. SHE

CH3OH + H2O −−→ 6 H + CO2 + 6 e–

Cathode: 1.23 V s. SHE
3
2 O2 + 6 H+ + 6 e– −−→ 3 H2O

Pt surface poisoned by CO

The presence of Ru promotes CO oxidation through a
“bi-functional mechanism”

Pt−(CO)ads + Ru−OH −−→ Pt + RuCO2 + H+ + 2 e–
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Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance
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Continual current growth is due to
methanol oxidation

Ru improves current by removing the
CO which blocks active sites
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Ru EXAFS
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Ru EXAFS
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Fit example: -225 mV without methanol
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Fit example: 675 mV without methanol
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Fit example: 675 mV with methanol

0 1 2 3 4 5 6 7 8 9 10 11

R [Å]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k2 χ
(k

) 
[Å

-2
]

675 mV - with MeOH

0 1 2 3 4 5

R [Å]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|χ
(R

)|
 [Å

-3
]

675 mV - with MeOH

Illinois Institute of Technology Univ. of Illinois at Chicago December 1, 2016 16 / 40



Ru-M paths
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Ru-O/C paths
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Bi-functional mechanism

C. Pelliccione et al., “In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation
mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst” J. Phys. Chem. C 117,
18904 (2013).
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Solid state batteries

Anode - negatively charged
electrode

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery

+

e
-

Charge - Li+ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced

Discharge - Li+ ions move back to cathode and electrons flow through the
external load, anode is oxidized

Potential, energy density, and power determined by the chemistry
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Common solid state battery chemistries

Lead-acid battery: Eoc = 2.05 V
Cathode: PbO2 + SO4

2− + 4H+ + 2 e− ←→ Pb2SO4 + 2 H2O
Anode: PbSO4 + 2 e− ←→ Pb + SO4

2−

NiMH battery: Eoc = 1.28 V
Cathode: NiOOH + H2O + e− ←→ Ni(OH)2 + OH−

Anode: M + H2O + e− ←→ MH + OH−

Li-ion battery: Eoc = 4.00 V
Cathode: CoO2 + Li+ + e− ←→ LiCoO2

Anode: Li+ + C6 + e− ←→ LiC6

Characteristics

• Medium to high energy density

• Limited cycle life (<1000)

• Large packaging overhead
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In situ lithiation of Sn

• In situ box for
non-aqueous
experiments

• Have measured
Sn3O2(OH)2, SnO2,
Sn, ZnO, MoO2 . . .

• Pouch cell simplifies
experiment

• MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes

• Focus on Sn nanoparticles which have rapid failure rate

• Successfully modeled Sn-Li paths in Sn3O2(OH)2 using 3 composite paths
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Sn EXAFS versus potential
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The Sn lithiation process
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis pro-
duces evenly distributed
Sn3O2(OH)2 nanoparticles
on graphite nanoplatelets

XRD shows a small amount
of Sn metal in addition to
Sn3O2(OH)2
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

C. Pelliccione et al., “In situ XAS study of the capacity fading mechanism in hybrid
Sn3O2(OH)2/graphite battery anode nanomaterials”, Chem. Mater. 27, 574-580 (2015).
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Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball milling, then
ball milled again with graphite to obtain composite

Theoretically could transfer 9 or more electrons upon
lithiation

Composite shows stable,
reversible capacity of 610
mAh/g for 100 cycles at
C/2 compared to rapidly
fading pure material.

How does the lithiation
process differ from that
of Sn metal?

Li et al., ECS Meeting Abstracts, MA2016-01 (2), 372-372 (2016)
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In situ EXAFS of Sn4P3/graphite
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Sn4P3/graphite initial cycling

OCV spectrum fits well to Sn4P3 structure with an additional Sn-O path

Sn4P3 structure persists through first two cycles with possible enchancement of
the Sn-Sn path at 2.6 Å
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Sn4P3/graphite reversible cycling

On third lithiation (charge) the Sn-P path is gone and only Sn-Li remains

Delithiation (discharge) produces Sn-P and Sn-Sn paths which are not those of
Sn4P3 but are reversible

Illinois Institute of Technology Univ. of Illinois at Chicago December 1, 2016 36 / 40



Sn4P3/graphite path lengths
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Sn4P3/graphite coordination numbers
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Sn4P3/graphite lithiation mechanism

It is possible that the particular struc-
ture of Sn4P3 along with the graphite
composite is responsible for the re-
versible lithiation compared to other
Sn materials. This is being tested for
Sn, SnO2, and SnS2 nanoparticles.

Improvements still need to be made in
the in-situ coin cell, potential designs
include keeping a spacer inthe cell for
Sn EXAFS or using a vacuum sealed
pouch cell.
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