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CSRRI People i
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MRCAT - historical timeline

1993

1995

1997

1998

2002

2005

2007

2009

MRCAT started with materials physics focus
Notre Dame, Northwestern, Purdue, |IT, Amoco

Construction begins on Insertion Device line
Univ. of Florida, Argonne/CSE joins

First light on Insertion Device line

Argonne/ER joins

Honeywell, Sandia fund initial Bending Magnet line
EPA joins

UOP joins Bending Magnet line buildout begins

Bending Magnet line operational
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MRCAT - present membership i

Current active membership

University of Notre Dame I}] r C a%
&—

[llinois Institute of Technology

Argonne Chemical Sci. & Eng. ID Line

Argonne Biosciences XAFS (4keV - 65 keV)
Environmental Protection Agency Continuous scan (< 2 min)
UOP Honeywell Very dilute samples

BP plc Microprobe

General users — catalysis Microdiffraction

UC Davis, Purdue, Penn State HAXPES

lllinois, Princeton, UCSB BM Line

Rice, LSU, UC Berkeley, Michigan XAFS (4keV - 32keV)
Wisconsin, Ohio State, MIT, ORNL X-ray lithography
NREL, WPAFB, Chicago, High energy tomography
LANL, ... Instrumentation
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The EXAFS experiment Y

I, = incident intensity .
. . . X = sample thickness
Iy = transmitted intensity . .
. . u(E) = absorption coefficient
I = fluorescence intensity

I I
Iy = [, HE)x w(E)x =1n <I_t) u(E) /—f
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XAS data \
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EXAFS analysis
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In(ly/l)
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EXAFS analysis
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EXAFS analysis
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EXAFS analysis
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EXAFS analysis

remove background and
apply k-weighting

In(ly/l)
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EXAFS analysis

In(ly/l)
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Illinois Institute of Technology

remove background and
apply k-weighting

25 B

R(A)

Univ. of lllinois at Chicago

take Fourier Transform
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EXAFS analysis
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| R
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extract structural pa-
rameters for first shell

Illinois Institute of Technology

remove background and
apply k-weighting

R(A)

Univ. of lllinois at Chicago

take Fourier Transform
and fit with a structural
model
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EXAFS analysis
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Methanol oxidation by a PtRu anode \d

PEMFC

Anode: 0.02V vs. SHE
CH5OH +H,0 —— 6H+ CO, + 6"

Cathode: 1.23V s. SHE
30,+6H" +6e” — 3H,0

MeOH >

Emde/ |\ Pt surface poisoned by CO

electrolyte ~ cathode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

The presence of Ru promotes CO oxidation through a
“bi-functional mechanism”

Pt—(CO),4s + Ru—OH — Pt + RuCO, + HT +2e”~

Illinois Institute of Technology Univ. of lllinois at Chicago December 1, 2016 9 /40



Role of Ru in CO oxidation? vV

PtRu bifunctional catalyst improves performance

e In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

Ru signal dominated by metallic Ru environment

How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance VY

T T T T T T
Without Methanol
0.002} . o
Low V peaks are H™ stripping
PtRu
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§ or . Ru shifts potential on all peaks
S Pt
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Electrochemical performance Y

08T 1717

Without Methanol
Low V peaks are H stripping
Dip at ~0.5V is oxygen stripping

Ru shifts potential on all peaks

Current [A]

With Methanol

Continual current growth is due to
methanol oxidation

. . Ru improves current by removing the
06 08 CO which blocks active sites

—0.2I 0 I 0.2 I 0.4
Potential [V]
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No methanol
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Ru EXAFS \

No methanol
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Ru EXAFS \d
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Ru EXAFS \d
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Ru EXAFS

No methanol
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Ru EXAFS

No methanol
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Ru EXAFS

No methanol

I—77
+675 mV
0.8 .
+375 mV
@ 06 4 @ o
< =,
— L +175 mV i —
= =
5 15
= 04 -225 mV =0
0.2

With methanol

Illinois Institute of Technology

Univ. of lllinois at Chicago

December 1, 2016

13 / 40



Ru EXAFS \
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Fit example: -225 mV without methanol A\
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Fit example: 675 mV without methanol
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Fit example: 675 mV with methanol A\
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Ru-M paths

3.4F
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(b) Ru-Ru
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[
02 04 06

02 0

Illinois Institute of Technology

250
02 0 . .
Applied Potential [V vs Ag/AgCl]

Without methanol

Ru-M distances are longer and
RuO; is formed at high potentials

With methanol

Ru-M distances are shorter and re-
main the same at all potentials
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Ru-O/C paths A\

21F B
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Bi-functional mechanism A\
2

CO migrates to
Ru

-

3

OH oxidizes CO

: to CO,

oY

COonPt
OHonRu

Lﬁ
S CH,0H @O PUNanopa
oxidized on
Pt leaving 4
CO behind Pt and Ru sites

“ vacated

°°®

C. Pelliccione et al., “In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation
mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst” J. Phys. Chem. C 117,
18904 (2013).
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Solid state batteries

Anode -
electrode

negatively charged

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move
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Solid state batteries

Anode -
electrode

negatively charged

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery
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Solid state batteries V

Anode - negatively charged > €
electrode
Cathode - positively charged

electrode

Separator - allows ions to pass
without short circuit

RO
s
is:e'e
08?00

b

%

000
016:06)
06100
eas
0‘8:00

Electrolyte - medium through
which ions move

Consider a Li-ion battery

Charge - Li™ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced
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Solid state batteries V
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Charge - Li™ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced
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electrode
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Consider a Li-ion battery

Discharge - Lit ions move back to cathode and electrons flow through the
external load, anode is oxidized
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Solid state batteries

Anode -
electrode

negatively charged

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery
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Charge - Li™ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced

Discharge - Lit ions move back to cathode and electrons flow through the

external load, anode is oxidized

Potential, energy density, and power determined by the chemistry
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Common solid state battery chemistries i’
Lead-acid battery: Eoe =205V
Cathode: PbO, + SO,>~ 4+ 4H" +2e~ +— Pb,SO, + 2 H,0
Anode: PbSO, +2e~ +«— Pb+ S0,%
NiMH battery: E,e =128V
Cathode: NiOOH + H,0 + e~ <«+— Ni(OH), + OH~™
Anode: M+H,O+e <+<— MH+ OH™
Li-ion battery: Eoc = 4.00V
Cathode: CoO, + Lit + e~ +— LiCoO,
Anode: Lit + Cg + e <+— LiCq

Characteristics
e Medium to high energy density
e Limited cycle life (<1000)
e Large packaging overhead
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In situ lithiation of Sn A

e In situ box for
non-aqueous
experiments

e Have measured
Sn;0,(0OH),, SnO,,
Sn, ZnO, MoO, ...

e Pouch cell simplifies
experiment

e MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes
e Focus on Sn nanoparticles which have rapid failure rate

o Successfully modeled Sn-Li paths in Sn;O,(OH), using 3 composite paths
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Sn EXAFS versus potential vV
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Sn EXAFS versus potential vV
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The Sn lithiation process

Distance (A)

Near Neighbors

3.3
3.2
3.1
3.0

21 F

ul 1 1 1 Jl-\ll 1 1 1

10 09 08 07 06 05 04 03 02 0.1
Potential (V vs Li/Li*)

0.60V — Sn metal begins to break down and Li appears

0.45V — number of Li reaches 11 and stabilizes at near full Li,,Sng
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Synthesis of Sn-graphite nanocomposites

ANL-EMC 5.0kV 11.8mm x45.0k SE(M)

One-pot  synthesis
duces

Sn;0,(0H),
on graphite nanoplatelets

XRD shows a small amount
of Sn metal in addition to

Sn;0,(0H),

Illinois Institute of Technology
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evenly distributed
nanoparticles
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In situ XAS studies of lithiation 3
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

k(AT

10
<
T os| ]
X
0.0 L L
0 1 2 3 4 5
R(R)

December 1, 2016 28 / 40

Illinois Institute of Technology Univ. of lllinois at Chicago



In situ XAS studies of lithiation \ 74

k(AT

Fresh electrode can be fit
with Sn;O,(OH), structure
which is dominated by the
near neighbor Sn-O dis-
tances

IX(R)| (A7)

05 -

0.0

R (R)
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In situ XAS studies of lithiation

k(AT

IX(R)| (A7)

R (R)

Illinois Institute of Technology Univ. of lllinois at Chicago

Fresh electrode can be fit
with Sn;O,(OH), structure
which is dominated by the
near neighbor Sn-O dis-
tances

Only a small amount of
metallic Sn-Sn distances can
be seen
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In situ XAS studies of lithiation \ 74

Reduction of number of Sn-
O near neighbors and 3 Sn-
Li paths characteristic of the
Li5,Sng structure
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In situ XAS studies of lithiation i

Metallic Sn-Sn distances ap-
pear but Sn-Li paths are still
present, further reduction in
Sn-O near neighbors.
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In situ XAS studies of lithiation \ 74

Number of Neighbors

—
1
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In situ XAS studies of lithiation i

Number of Li near
I 1 neighbors oscil-
lates with the
T charge/discharge

1 cycles but never
1 returns to zero

Number of Neighbors

—
L 1

0 1 1 1 1 1 1 1
N\ @ @ @ @ @ 2 @
OO 6’9 *«\'&q \\'éc’ \\"}Q \\q}q v'ég Q’I}Q
O © O O O O @)
N A @ © o
> I N
N2 o of

Illinois Institute of Technology Univ. of lllinois at Chicago December 1, 2016 31/ 40



In situ XAS studies of lithiation

Number of Neighbors

—
L 1

Illinois Institute of Technology

Univ. of lllinois at Chicago

Number of Li near
neighbors oscil-
lates with the
charge/discharge
cycles but never
returns to zero

In situ cell promotes
accelerated aging be-
cause of Sn swelling
and the reduced
pressure of the thin
PEEK pouch cell
assembly
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In situ XAS studies of lithiation

During 1%t Charge
Li intercalate in Sn,0,(0OH), Sn aggregates in
center of clusters

After 1% Charge Reversible Cycling
— —
Li,0 is formed

Each cluster expands/retracts
with Li insertion/removal

Crystalline Sn,0,(OH), Atomic Sn-Li clusters partially
isolated with Li,0

C. Pelliccione et al., “In situ XAS study of the capacity fading mechanism in hybrid
Sn30,(OH)>/graphite battery anode nanomaterials”, Chem. Mater. 27, 574-580 (2015).
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Sny4P3/graphite composite anode

Sn,P; synthesized by high energy ball milling, then
ball milled again with graphite to obtain composite

Theoretically could transfer 9 or more electrons upon
lithiation
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Li et al., ECS Meeting Abstracts, MA2016-01 (2), 372-372 (2016)

Illinois Institute of Technology Univ. of lllinois at Chicago

Composite shows stable,
reversible capacity of 610
mAh/g for 100 cycles at
C/2 compared to rapidly
fading pure material.

How does the lithiation
process differ from that
of Sn metal?
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In situ EXAFS of SnsP3/graphite \

1000

Charge Rate: C/4 ® Sn,P./Graphite Charge
| o 8n,P /Graphite Discharge
800
Electrode L
=3 °
°
/ g ° R o °
- £ 600
Lithium = o
. e L
Spacei | s
400 |- ®
Spring
L’ / 200 o
i 1 1
0 2 4 6

Cycle number in situ cells

Illinois Institute of Technology Univ. of lllinois at Chicago December 1, 2016 34 / 40



SnyP3/graphite initial cycling V
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OCV spectrum fits well to Sn,P5 structure with an additional Sn-O path

Sn,P5 structure persists through first two cycles with possible enchancement of
the Sn-Sn path at 2.6 A
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Sn4P3/graphite reversible cycling
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On third lithiation (charge) the Sn-P path is gone and only Sn-Li remains

Delithiation (discharge) produces Sn-P and Sn-Sn paths which are not those of
Sn,P; but are reversible
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Sn4P3/graphite path lengths V
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Sn4P3/graphite coordination numbers v
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SnyP3/graphite lithiation mechanism v

It is possible that the particular struc-
ture of Sn,P; along with the graphite
composite is responsible for the re-
versible lithiation compared to other
Sn materials. This is being tested for
Sn, SnO,, and SnS, nanoparticles.

Improvements still need to be made in
the in-situ coin cell, potential designs
include keeping a spacer inthe cell for
Sn EXAFS or using a vacuum sealed
pouch cell.
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