How do we design improved materials for electrochemical energy applications?

Carlo Segre

Physics Department & Center for Synchrotron Radiation Research and Instrumentation Illinois Institute of Technology

June 13, 2016

Opening remarks

Challenges for electrochemical energy systems

- Fuel cells reduce overpotential losses and use of expensive materials
- + Batteries increase volumetric & gravimetric energy density while reducing costs by $\sim 50\%$

Will present three examples of how we can probe fundamental mechanisms at play and use this information to design better materials

Opening remarks

Challenges for electrochemical energy systems

- Fuel cells reduce overpotential losses and use of expensive materials
- + Batteries increase volumetric & gravimetric energy density while reducing costs by $\sim 50\%$

Will present three examples of how we can probe fundamental mechanisms at play and use this information to design better materials

- Aside: a brief introduction to XAS
- Methanol oxidation catalysts
- Sn-based lithium ion battery anodes
- Nanofluid battery electrodes
- Final thoughts

Acknowledgements

Illinois Institute of Technology

- John Katsoudas Physics & CSRRI
- Vijay Ramani Chemical Engineering
- Elena Timofeeva Chemistry & CSRRI

Argonne National Laboratory

Sujat Sen – Energy Systems Division

IIT Graduate Students

- Chris Pelliccione Physics
- Yujia Ding Physics
- Yue Li Chemical Engineering

Supported by DOE ARPA-e

- Nathaniel Beaver Physics
- Shankar Aryal Physics
- Elahe Moazzen Chemistry

Acknowledgements

Illinois Institute of Technology

- John Katsoudas Physics & CSRRI
- Vijay Ramani Chemical Engineering
- Elena Timofeeva Chemistry & CSRRI

Argonne National Laboratory

Sujat Sen – Energy Systems Division

IIT Graduate Students

- Chris Pelliccione Physics
- Yujia Ding Physics
- Yue Li Chemical Engineering

Supported by DOE ARPA-e

- Nathaniel Beaver Physics
- Shankar Aryal Physics
- Elahe Moazzen Chemistry

The EXAFS experiment

V

- Conceptually simple
- Transmission or fluorescence
- "Sees" amorphous phases & local structural distortions

The EXAFS equation

The EXAFS oscillations can be modelled and interpreted using a conceptually simple equation (the details are more subtle!)

$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2} f_{j}(k)}{k R_{j}^{2}} e^{-2k^{2} \sigma_{j}^{2}} e^{-2R_{j}/\lambda(k)} \sin \left[2R_{j} + \delta_{j}(k)\right]$$

The sum could be over shells of atoms (Pt-Pt, Pt-Ni) or over scattering paths for the photo-electron.

- $f_j(k)$: scattering factor for the path $\lambda(k)$: photoelectron mean free path $\delta_i(k)$: phase shift for the jth path
- N_j : number of paths of type j R_i : half path length
- σ_j : path "disorder"

EXAFS challenges

General Challenges
Sample optimization
Careful experimentation
Physical model

 In situ electrocatalyst & battery EXAFS
Making it work!
Heterogeneous systems
Asking the right questions

Methanol oxidation by a PtRu anode

Anode: 0.02 V vs. SHE $CH_3OH + H_2O \longrightarrow 6H + CO_2 + 6e^-$

 $\begin{array}{c} \mbox{Cathode: } 1.23\,\mbox{V s. SHE} \\ \frac{3}{2}\,\mbox{O}_2 + 6\,\mbox{H}^+ + 6\,\mbox{e}^- \longrightarrow 3\,\mbox{H}_2\mbox{O} \end{array}$

Pt surface poisoned by CO

U.S. Department of Defense (DoD) Fuel Cell Test and Evaluation Center (FCTec)

Ru promotes CO oxidation through a "bi-functional mechanism"

$$Pt-(CO)_{ads} + Ru-OH \longrightarrow Pt + RuCO_2 + H^+ + 2e^-$$

Further improvements require fundamental understanding of the mechanism

Ru-decorated Pt nanoparticles

ANL-EMC 10.0kV 11.7mm x9.01k SE(M) 9/14/2011 5.00um

Illinois Institute of Technology

Electrochemical performance

Without Methanol Low V peaks are H⁺ stripping Dip at ~ 0.5 V is oxygen stripping Ru shifts potential on all peaks

Electrochemical performance

Without Methanol Low V peaks are H⁺ stripping Dip at ~ 0.5 V is oxygen stripping Ru shifts potential on all peaks

With Methanol

Ru lowers activation potential from \sim 400mV to \sim 175mV

Ru improves current output by over $3.5\times$

Ru EXAFS

Ru EXAFS

Ru-M paths

Without methanol

Ru-M distances are longer and RuO_2 is formed at high potentials

With methanol

Ru-M distances are shorter and remain the same at all potentials

Ru-O/C paths

Without methanol

Above 375 mV Ru-O paths appear and total number of Ru-O neighbors increases to that of RuO₂

With methanol

Ru has one low Z neighbor at all potentials (carbon); a second above 175 mV (oxygen) with constant bond lengths and slightly increasing numbers

Bi-functional mechanism

C. Pelliccione et al., "In situ Ru K-edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst" *J. Phys. Chem.* C 117, 18904-18912 (2013).

Illinois Institute of Technology

High capacity Sn-based battery anodes

Sn-based anodes have high initial capacity but poor cyclability *In situ* EXAFS can help to understand the details of lithiation

In situ lithiation of Sn

- In situ box for non-aqueous experiments
- Have measured Sn₃O₂(OH)₂, SnO₂, Sn, ZnO, MoO₂ ...
- Pouch cell simplifies experiment

- MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes
- Focus on Sn nanoparticles which have rapid failure rate
- Successfully modeled Sn-Li paths using 3 composite paths

 $Li_{22}Sn_5$ has 14 Sn-Li paths with distance 3.4Å or less

Li₂₂Sn₅ has 14 Sn-Li paths with distance 3.4Å or less

 $Li_{22}Sn_5$ has 14 Sn-Li paths with distance 3.4Å or less

 $Li_{22}Sn_5$ has 14 Sn-Li paths with distance 3.4Å or less

 $Li_{22}Sn_5$ has 14 Sn-Li paths with distance 3.4Å or less

Li₂₂Sn₅ has 14 Sn-Li paths with distance 3.4Å or less

The Sn lithiation process

0.60V – Sn metal begins to break down and Li appears

0.45V – number of Li reaches 11 and stabilizes at near full Li₂₂Sn₅

Sn-Sn bonds (Sn metal) never completely disappear

On subsequent delithiation and lithiation cycles, the total number of incorporated Li continues to decrease.

Sn nanoparticle degradation mechanism

The Sn nanoparticles do not fully lithiate, the conversion on the outside of the particle electrically isolates the clusters and the metallic core

 SnO_2 is somewhat better but still shows the effects of electrical isolation

C. Pelliccione et al. "Potential-resolved in situ x-ray absorption spectroscopy study of Sn and SnO_2 nanomaterial anodes for lithium-ion batteries," *J. Phys. Chem.* C 120, 5331-5339 (2016).

Synthesis of Sn-graphite nanocomposites

One-pot synthesis produces evenly distributed $Sn_3O_2(OH)_2$ nanoparticles on graphite nanoplatelets

XRD shows a small amount of Sn metal in addition to $Sn_3O_2(OH)_2$

$Sn_3O_2(OH)_2$ capacity comparison

In situ XAS of $Sn_3O_2(OH)_2$

After first lithiation, Sn-O near neighbors significantly reduced

3 Sn-Li paths characteristic of the ${\rm Li}_{22}{\rm Sn}_5$ structure are prominent

No Sn-Sn paths typical of metallic Sn are present

$Sn_3O_2(OH)_2$ lithium content

Number of Li near neighbors oscillates with the charge/discharge cycles but never returns to zero

In situ cell promotes accelerated aging because of the reduced pressure of the thin PEEK pouch cell assembly. New cell designs can significantly improve *in situ* cyclability.

$Sn_3O_2(OH)_2$ lithiation mechanism

 $Sn_3O_2(OH)_2$ provides ideal-sized clusters for Sn-lithiation and composite with graphite nanoplatelets gives superior cyclability

Such composites may be best path to high capacity and cycle life

C. Pelliccione et al., "In situ XAS study of the capacity fading mechanism in hybrid $Sn_3O_2(OH)_2/graphite battery anode nanomaterials", Chem. Mater. 27, 574-580 (2015).$

Nanofluid battery electrodes

Solid-state batteries have high energy density but large fraction of inactive packaging materials and high cost

Flow batteries have low energy density but decouple energy storage from power generation

A number of groups across the country working on fluidic electrodes with suspended electroactive particles which combine the advantages of both

Charging & discharging nanoelectrofuel

Charging and discharging in a flow can be achieved by proper design of the electrode but all these ideas have to be validated through computation and experiment.

- Porous electrode for high contact probability
- Turbulent flow to maximize electrode contact
- Moderate pressure drop across the cell
- Must have electron transfer with transient contact

NEF anode: Fe₂O₃

Start with commercially available ${\rm Fe_2O_3}$ suspended in water with $\sim 5 {\rm M}$ LiOH

The goal is to reduce ${\rm Fe}^{+3}$ to ${\rm Fe}^{+2}$ and there are three reactions present which compete with each other

$$\begin{split} & \operatorname{Fe}_2 \operatorname{O}_3 + 3\operatorname{H}_2 \operatorname{O} + 2\operatorname{e}^- \longrightarrow 2\operatorname{Fe}(\operatorname{OH})_2 + 2\operatorname{OH}^- & E_0 = -0.9V & \sim 335 \text{ mAh/g} \\ & \operatorname{Fe}(\operatorname{OH})_2 + 2\operatorname{e}^- \longrightarrow \operatorname{Fe} + 2\operatorname{OH}^- & E_0 = -1.0V & \sim 670 \text{ mAh/g} \\ & 2\operatorname{H}_2 \operatorname{O} + 2\operatorname{e}^- \longrightarrow \operatorname{H}_2 + 2\operatorname{OH}^- & E_0 = -0.9V & \operatorname{Bad!} \end{split}$$

pristine Fe_2O_3

sulfonated Fe_2O_3

Illinois Institute of Technology

(OH)₃-Si-(CH)₃-SO₃ NGenE 2016

treat with \sim 3 wt%

Fe_2O_3 rheology

5 wt% pristine (left) vs. modified (right) nanofluid after 2 weeks

Dynamic light scattering measurements of $\mathrm{Fe_2O_3}$ nanofluids

Viscosity comparision of pristine (P) and modified (S) Fe_2O_3 nanofluids

Solid state performance

Performance of sulfonated nanoparticles very similar to pristine

Morphology of pristine electrode changes

pristine

sulfonated

NGenE 2016

Fe₂O₃ post-cycling analysis

Pristine Fe₂O₃ electrodes show recrystallized Fe metal particles

Sulfonated Fe₂O₃ electrodes show only oxide particles

S. Sen et al., "Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ -Fe₂O₃ nanoparticles," *J. Nanopart. Res.* **17** 437 (2015).

α – Fe₂O₃ in situ EXAFS

- Clear evidence of metallic Fe but no Fe(OH)₂ seen
- Discharge does not return electrode to α -Fe₂O₃
- Over-charge pushes system toward metallic Fe
- Fitting reveals mixture of Fe and/or Fe_3O_4/γ -Fe $_2O_3$ in all spectra.

	Fe_3O_4	metallic Fe
1 st charge	85%	15%
1 st discharge	100%	
2 nd charge	83%	17%
1 st over-charge	82%	18%
2 nd over-charge	67%	33%

Fe₂O₃ NEF performance

A fruitful, but complex, direction for development is composite materials where the complementary properties of two or more materials are expressed

Successful design of new materials for electrochemical energy systems can be inspired by information obtained from $in \ situ$ characterization

A fruitful, but complex, direction for development is composite materials where the complementary properties of two or more materials are expressed

Successful design of new materials for electrochemical energy systems can be inspired by information obtained from $in \ situ$ characterization

Thank You