A promising conversion-type anode

Sn4P3

material for LIB.

SngP3 + 9Li" + 9e- «<—> 4Sn + 3Li3P;
Sn +4.4Li" +4.4e- €<—>Liz.4Sn.

Advantages:
 Hig

mA
 Hig
 Low cost;

n/g;

Challenges:

* More than 200% volume change
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N theoretical capacity: 1255

n volumetric density;

during charge/discharge;

* Phase segregation during lithiation

Ball milling Sn4Ps and
graphite for 4 hours
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Electrolyte:
1.2 M LiPF4 in EC/EMC 3:7 with/without 10% FEC

Sn4P3/Graphite: 80% active materials, 10% CMC binder, 10% SuperP
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distributed within graphite
matrix. During the discharge
process, the formed LisP and
LixSn phases are tightly
confined in the conductive
graphite matrix.

Add 10% FEC into electrolyte

* Form a stable SEl layer;
* |Improve cycle life and
coulombic efficiency.

Study the mechanism of improved performance of SnsP3/Graphite by in situ EXAFS

X-ray absorption fine structure Fundamentals

An atom absorbing an X-ray with the hv

resultant ejection of a core electron

into the continuum.
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Sourse: Matthew Newville’s
“Fundamentals of XAFS”
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Advantages:

* Does not depend on long range crystalline order;

* A powerful technique to study mechanism of lithiation
and delithiation process in situ.
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XANES and EXAFS:

(X-ray Absorption Near Edge Structure
and Extended X-ray Absorption Fine
Structure)

Interference patterns created
by the ejected photoelectron
expands as a spherical wave,
reaches the neighboring
electron clouds, and scatters
back to the core hole.

Analysis Steps:

 Remove background

* Apply k-weighting

* Fourier transform into
R space

* Fit with a structural
model

e Extract local structural
parameters: Number
of near neighbors and
atomic distance.

EXAFS data was collected at the Sn K-edge in fluorescence; Measurements were taken from a kapton window on the in situ

coin cell, during the cell is operating.

* The origin represent the center Sn atoms. The peaks
represent paths between center Sn atoms and their
near neighbors.
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Black: crystal structure of SnsP3, and
higher Sn-O generated by ball milling.
Red: converted to LixSn alloy, and no
Sn-P path left.

Blue: Sn-P and Sn-Sn paths reappear,
and no Li left. / _
Tin phosphide is generated in a S "'R('A) .
different amorphous structure rather Dashed curves:

than the original crystal structure.
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slight changes in all paths.

Near Neighbors
Paths Sn-0 Sn-P Sn-Sn Sn-Li
Sn4P3/Graphite 3rd Charge 0.3+0.1 RN 1.5+0.2 7.6+0.7
P .ngﬁgkﬁgkﬁgkﬁgkﬁgk
Sna4P3/Graphite 3rd Discharge 0.8+0.2 1.4 +£0.2 1.3+0.3 §§§§§§§§§§%§
Sn4P3 1st Charge 0.3+£0.1 0.5+£0.1 1.9+0.3 4.4 +0.5
Sn4P3 1st Discharge 0.3+£0.1 0.5+0.2 2.3+£0.3 2.6 0.7

In SnaP3/Graphite, no P near neighbors left in charge data and no Li near
neighbors left in discharge data. In contrast, Sn-P and Sn-Li exists in both charge
and discharge data of pure Sn4Ps.

These results demonstrate SnsPs/Graphite has much better reversibility
than pure Sn4Ps.
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EXAFS as a function of capacity shows the process
of lithiation and delithiation of 3rd cycle.
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« Select 3rd cycle of SnsP3/Graphite

and 1st cycle of Sn4P3 as
representatives. Because these
cycles have the highest capacities
and have the most lithiated data
and the most delithiated data.

Performance of in situ cells are
not as good as normal coin cells.
The sample in the window area
may show worse reversibility than
the rest of cell, because of the
lower pressure.
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