
The science and engineering of Nanoelectrofuel flow
battery development

Carlo Segre

Physics Department
&

Center for Synchrotron Radiation Research and Instrumentation
Illinois Institute of Technology

April 21, 2016

Illinois Institute of Technology Illinois Institute of Technology - Physics Colloquium April 21, 2016 1 / 37



Outline

• The nanoelectrofuel concept

• Challenges for prototype design

• How to make nanoelectrofuel

• Fe2O3 anode characterization

• Synchrotron radiation studies

• Fe2O3 nanoelectrofuel characterization

• Ni(OH)2 cathode

• Lessons from I-Corps

Illinois Institute of Technology Illinois Institute of Technology - Physics Colloquium April 21, 2016 2 / 37



Acknowledgements

Illinois Institute of Technology
• John Katsoudas – Physics & CSRRI

• Vijay Ramani - Chemical Engineering

• Elena Timofeeva – Chemistry & CSRRI

Argonne National Laboratory
• Sujat Sen – Energy Systems Division

• Kamelsh Suthar – Advanced Photon Source

IIT Graduate Students
• Chris Pelliccione – Physics

• Yujia Ding – Physics

• Yue Li – Chemical Engineering

• Nathaniel Beaver – Physics

• Shankar Aryal – Physics

• Elahe Moazzen – Chemistry

Supported by DOE ARPA-e

Illinois Institute of Technology Illinois Institute of Technology - Physics Colloquium April 21, 2016 3 / 37



Batteries 101

Anode - negatively charged
electrode

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery

+

e
-

Charge - Li+ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced

Discharge - Li+ ions move back to cathode and electrons flow through the
external load, anode is oxidized

Potential, energy density, and power determined by the chemistry
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Common solid state battery chemistries

Lead-acid battery: Eoc = 2.05 V
Cathode: PbO2 + SO4

2− + 4H+ + 2 e− ←→ Pb2SO4 + 2 H2O
Anode: PbSO4 + 2 e− ←→ Pb + SO4

2−

NiMH battery: Eoc = 1.28 V
Cathode: NiOOH + H2O + e− ←→ Ni(OH)2 + OH−

Anode: M + H2O + e− ←→ MH + OH−

Li-ion battery: Eoc = 4.00 V
Cathode: CoO2 + Li+ + e− ←→ LiCoO2

Anode: Li+ + C6 + e− ←→ LiC6

Characteristics

• Medium to high energy density

• Limited cycle life (<1000)

• Large packaging overhead
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Flow batteries

Characteristics

• Low packaging overhead

• Unlimited cycle life

• Low energy density

Vanadium: Eoc = 1.26 V
Cathode: V3+ + e− ←→ V2+

Anode: VO2
+ + 2 H+ + e− ←→ VO2+ + H2O

Zinc-Bromine: Eoc = 1.67 V
Cathode: Br2(aq) + 2 e− ←→ 2 Br−(aq)
Anode: Zn2+

(aq) + 2 e− ←→ Zn(s)
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Nanoelectrofuel flow battery

Suspended electroactive nanoparticles

Advantages of flow batteries

Energy density of solid state

Chemistry agnostic
aqueous or non-aqueous

Initial funding

IIT/Argonne collaboration

Prototype: 1 kWh total energy stored
40 V, C/3 discharge rate

Develop commercialization plan
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Advantages of nanoelectrofuel

initial overhead for
power stack depends on
desired voltage

active material fraction
depends on loading
(50% shown)

beyond 50 kWh, NEF
has higher volumetric ca-
pacity
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Long term vision
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Nanoelectrofuel challenges

• What is the intrinsic performance
of active materials in
nanoparticle form?

• Can suspended nanoparticles be
effectively charged and
discharged during flow?

• How much loading can be
stabilized in suspension?

• Will these nanoelectrofuels be
pumpable and not destroy the
enclosure materials?

• Can the technology be econmical
enough to compete with more
established technologies?

40 V aqueous chemistry stack

25 kWh using 4.5 L of nanoelectrofuel

26 kg stack, 10 kg 50% loaded fluid

70 Wh/kg (compare to 40 Wh/kg for
Pb-acid)
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Charging & discharging nanoelectrofuel

Charging and discharging in a flow can be achieved by
proper design of the electrode but all these ideas have
to be validated through computation and experiment.

• Porous electrode
for high contact
probability

• Turbulent flow
to maximize
electrode
contact

• Moderate
pressure drop
across the cell

• Must have
electron transfer
with transient
contact
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First charging results

December 2012 data comparing x-ray absorption spectroscopy results on Cu6Sn5

anode material in a coin cell and flowing through a metal frit.
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Similar trends indicate that nanoparticles in the flow cell are charging, albeit
slowly and inefficiently.
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Beaker cell for initial charging tests
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Initial nanofluid charging

Initial nanofluid charging using a
beaker cell

Agitation using a magnetic stir bar
with a wire mesh current collector im-
mersed in fluid

Non-aqueous (Li-ion) chemistries have
very low conductivity and require sig-
nificant research to move forward

Aqueous chemistries easier to charge
and more compatible with “real” world

Charge/discharge times still 10× too
slow!

Need a flow-through system to im-
prove charge/discharge times
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Test flow cell
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Test flow cell
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NEF anode: Fe2O3

Start with commercially available Fe2O3 suspended in water with ∼ 5M LiOH

The goal is to reduce Fe+3 to Fe+2 and there are three reactions present which
compete with each other

Fe2O3+3 H2O+2 e– −−→ 2 Fe(OH)2+2 OH–

Fe(OH)2 + 2 e– −−→ Fe + 2 OH–

2 H2O + 2 e– −−→ H2 + 2 OH–

E0 = −0.9V

E0 = −1.0V

E0 = −0.9V

∼ 335 mAh/g

∼ 670 mAh/g

Bad!

pristine Fe2O3
treat with ∼ 3 wt%
(OH)3−Si−(CH)3−SO3

sulfonated Fe2O3
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Fe2O3 nanoparticle characterization

X-ray diffraction shows no structural changes with sul-
fonation

TGA measurement shows ∼3 wt% due to surface treat-
ment, about 1 monolayer on a typical nanoparticle
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Fe2O3 rheology

5 wt% pristine (left) vs. modified (right) nanofluid
after 2 weeks

Dynamic light scattering measurements of Fe2O3

nanofluids

Viscosity comparision of pristine (P) and modified
(S) Fe2O3 nanofluids
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Fe2O3 solid electrode electrochemistry

Casted electrodes on Ni
foam in alkaline pouch
cell

Hydrogen evolution at
potentials below -1.2V

Fe2O3 cyclic voltam-
metry shows redox re-
actions of Fe in both
pristine and sulfonated
nanoparticles
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Solid state performance

Performance of sul-
fonated nanoparticles
very similar to pristine

Morphology of pristine
electrode changes

pristine sulfonated
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Fe2O3 post-cycling analysis

Pristine Fe2O3 electrodes show recrystallized Fe metal particles

Sulfonated Fe2O3 electrodes show only oxide particles
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The EXAFS experiment

• Conceptually simple

• Transmission or
fluorescence

• “Sees” amorphous
phases & local
structural distortions
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The EXAFS equation

The EXAFS oscillations can be modelled and interpreted using a conceptually
simple equation (the details are more subtle!)

χ(k) =
∑
j

NjS
2
0 fj(k)

kR2
j

e−2k2σ2
j e−2Rj/λ(k) sin [2Rj + δj(k)]

The sum could be over shells of atoms (Pt-Pt, Pt-Ni) or over scattering paths for
the photo-electron.

fj(k): scattering factor for the path
λ(k): photoelectron mean free path
δj(k): phase shift for the jth path

Nj : number of paths of type j
Rj : half path length
σj : path “disorder”

Ni

Pt

Pt

Ni Pt
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EXAFS analysis
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Fe2O3 in situ studies

Charging reaction: 335 mAh/g
Fe2O3+3 H2O+2 e– −−→ 2 Fe(OH)2+2 OH–

Over-charging reaction: 670 mAh/g
2 Fe(OH)2 + 4 e– −−→ 2 Fe + 4OH–
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In situ Fe2O3 charging

• Aqueous pouch cell

• Ni-mesh electrode

• MRCAT 10-BM beam line

• Fluorescence mode data
acquisition

• ∼45 min per data set

• Only take data at end of charge/discharge

• First & second charges to 335 mAh/g

• Discharges only produce 150 mAh/g

• Two over-charges to 1005 mAh/g
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Fe2O3 XANES
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• First charge shows edge similar
to Fe metal

• Discharged electrode never
returns to α-Fe2O3 but seems to
be in γ-Fe2O3 or Fe3O4

• No evidence of Fe(OH)2 is
observed in charged electrode

• Derivatives show these features
even more clearly
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Fe2O3 EXAFS
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• Clear evidence of metallic Fe but
no Fe(OH)2 seen

• Discharge does not return
electrode to α-Fe2O3

• Over-charge pushes system
toward metallic Fe

• Fitting reveals mixture of Fe
and/or Fe3O4/γ-Fe2O3 in all
spectra.

Fe3O4 metallic Fe
1st charge 85% 15%
1st discharge 100%
2nd charge 83% 17%
1st over-charge 82% 18%
2nd over-charge 67% 33%
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Fe2O3 nanofluid

5% wt suspension of
Fe2O3 nanoparticles in
KOH/LiOH solution

Capacity increase with
cycles indicates that it
is limited by suboptimal
current collector

Need to move to flow-
through current collec-
tor design

Illinois Institute of Technology Illinois Institute of Technology - Physics Colloquium April 21, 2016 29 / 37



Pristine Fe2O3 NEF performance

5% suspension of
pristine Fe2O3, over-
charged and discharged
at C/33 with improved
electrode

With repeated cycling,
the performance of the
NEF is increasing with
a capacity of up to 300
mAh/g
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Sulfonated Fe2O3 NEF performance

5% suspension of sul-
fonated Fe2O3, over-
charged and discharged
at C/30 and C/10 with
improved electrode

Capacity lower than
pristine Fe2O3 but im-
proving with training

Surface treatment may
be preventing conver-
sion to metallic Fe,
thus lower “capacity”
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NEF cathode: Ni(OH)2

No commercially available Ni(OH)2, must synthesize our own!

The goal is to oxidize Ni+2 to Ni+3

Ni(OH)2 + OH– −−→ NiOOH + H2O + e– ∼ 289 mAh/g

Ni(OH)2 is a poor conductor, lots of challenges still ahead
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Initial funding: the RANGE program

Robust Affordable Next Generation Energy Storage Systems

Develop transformational electro-
chemical energy storage technolo-
gies for electric vehicles (EVs)

• provide greater EV driving
range

• reduce overall weight of the
vehicle

• maximize the overall energy
stored in a vehicle

• enhance safety

• minimize manufacturing costs

• enable greater design
flexibility for manufacturers

22 projects across the United States
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The I-Corps experience

Participated in the I-Corps Energy &
Transportation program sponsored by
Next Energy in Detroit

• initial goal to grow the EV
market by providing a better
battery

• conducted over 60 customer
interviews in 1 month

• complex and interconnected
value supply chain

• 10-20 years to break into the
automotive supply chain!

Electric utility vehicles (EUVs) can
bridge the “valley of death”

• EUV market 5× larger than EV

• simpler vehicles with smaller
value supply chain

• lead-acid batteries must be
replaced every year

Total Automotive Market

TAM – $40B

SAM – $10B

SOM – $ 2B
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SOM

Share of Market

Serviceable Addressable

Market

Total Automotive Market

TAM – $40B

SAM – $10B

SOM – $ 2B
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The first product

EUVs and fork lifts are
already predominantly
electric

batteries replaced at fac-
tory each year

typical motor is 36-40V

4-pack of lead-acid bat-
teries are most common

12-hour charge cycle re-
quired between uses

a perfect match for
our nanoelectrofuel pro-
totype battery
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What a startup might look like
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Thank You!
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