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Outline

• X-ray absorption spectroscopy

• Operando synchrotron fuel cells

• Methanol oxidation on a PtRu catalyst

• Ru@Pt core-shell methanol catalysts

• Sn anodes for Li-ion batteries

• Accelerated capacity fading studies
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The EXAFS experiment

Io = incident intensity
It = transmitted intensity
If = fluorescence intensity

x = sample thickness
µ(E ) = absorption coefficient

It = Ioe
−µ(E)x µ(E )x = ln

(
Io
It

)
µ(E ) ∝ If

Io

Illinois Institute of Technology Univ. of Notre Dame - Cond. Matter Seminar October 29, 2015 3 / 31



XAS data
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EXAFS analysis
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Methanol oxidation by a PtRu anode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

Anode: 0.02 V vs. SHE

CH3OH + H2O −−→ 6 H + CO2 + 6 e–

Cathode: 1.23 V s. SHE
3
2 O2 + 6 H+ + 6 e– −−→ 3 H2O

Pt surface poisoned by CO

The presence of Ru promotes CO oxidation through a
“bi-functional mechanism”

Pt−(CO)ads + Ru−OH −−→ Pt + RuCO2 + H+ + 2 e–
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Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance
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Ru EXAFS
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Fit example: -225 mV without methanol
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Fit example: 675 mV without methanol
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Fit example: 675 mV with methanol
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Ru-M paths
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Ru-O/C paths
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Bi-functional mechanism

C. Pelliccione et al., “In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation
mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst” J. Phys. Chem. C 117,
18904 (2013).
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Solid state batteries

Anode - negatively charged
electrode

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery

+

e
-

Charge - Li+ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced

Discharge - Li+ ions move back to cathode and electrons flow through the
external load, anode is oxidized

Potential, energy density, and power determined by the chemistry
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In situ lithiation of Sn

• In situ box for
non-aqueous
experiments

• Have measured
Sn3O2(OH)2, SnO2,
Sn, ZnO, MoO2 . . .

• Pouch cell simplifies
experiment

• MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes

• Focus on Sn nanoparticles which have rapid failure rate

• Successfully modeled Sn-Li paths in Sn3O2(OH)2 using 3 composite paths
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Sn EXAFS versus potential
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The Sn lithiation process
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis pro-
duces evenly distributed
Sn3O2(OH)2 nanoparticles
on graphite nanoplatelets

XRD shows a small amount
of Sn metal in addition to
Sn3O2(OH)2
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

C. Pelliccione et al., “In situ XAS study of the capacity fading mechanism in hybrid
Sn3O2(OH)2/graphite battery anode nanomaterials”, Chem. Mater. 27, 574-580 (2015).
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Abstract

X-ray absorption spectroscopy using synchrotron radiation has become an essential tool
for operando studies of catalysts and batteries where nanoparticles and amorphous
materials preclude the use of x-ray diffraction to study structural changes. I will discuss
the fundamentals of synchrotron radiation and x-ray absorption spectroscopy along with
examples of how it is applied to the study of polymer electrolyte fuel cell catalysts and
lithium ion battery materials.
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