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Solid state batteries

Anode - negatively charged
electrode

Cathode - positively charged
electrode

Separator - allows ions to pass
without short circuit

Electrolyte - medium through
which ions move

Consider a Li-ion battery

+

e
-

Charge - Li+ ions move from cathode to anode and electrons also flow to the
anode externally, anode is reduced

Discharge - Li+ ions move back to cathode and electrons flow through the
external load, anode is oxidized

Potential, energy density, and power determined by the chemistry
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Common solid state battery chemistries

Lead-acid battery: Eoc = 2.05 V
Cathode: PbO2 + SO4

2− + 4H+ + 2 e− ←→ Pb2SO4 + 2 H2O
Anode: PbSO4 + 2 e− ←→ Pb + SO4

2−

NiMH battery: Eoc = 1.28 V
Cathode: NiOOH + H2O + e− ←→ Ni(OH)2 + OH−

Anode: M + H2O + e− ←→ MH + OH−

Li-ion battery: Eoc = 4.00 V
Cathode: CoO2 + Li+ + e− ←→ LiCoO2

Anode: Li+ + C6 + e− ←→ LiC6

Characteristics

• Medium to high energy density

• Limited cycle life (<1000)

• Large packaging overhead
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Flow batteries

Characteristics

• Low packaging overhead

• Unlimited cycle life

• Low energy density

Vanadium: Eoc = 1.26 V
Cathode: V3+ + e− ←→ V2+

Anode: VO2
+ + 2 H+ + e− ←→ VO2+ + H2O

Zinc-Bromine: Eoc = 1.67 V
Cathode: Br2(aq) + 2 e− ←→ 2 Br−(aq)
Anode: Zn2+

(aq) + 2 e− ←→ Zn(s)
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Nanoelectrofuel battery

Suspended electroactive nanoparticles

Advantages of flow batteries

Energy density of solid state

Chemistry agnostic
aqueous or non-aqueous

3 year funded program

Prototype: 1 kWh total energy stored
40 V, C/3 discharge rate

Develop commercialization plan
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Nanoelectrofuel challenges

• What is the intrinsic performance
of active materials in
nanoparticle form?

• Can suspended nanoparticles be
effectively charged and
discharged during flow?

• How much loading can be
stabilized in suspension?

• Will these nanoelectrofuels be
pumpable and not destroy the
enclosure materials?

• Can physics graduate students
on the project get a Ph.D. doing
this very applied project?

40 V aqueous chemistry stack

25 kWh using 4.5 L of nanoelectrofuel

26 kg stack, 10 kg 50% loaded fluid

70 Wh/kg (compare to 40 Wh/kg for
Pb-acid)
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Charging & discharging nanoelectrofuel

Charging and discharging in a flow can be achieved by
proper design of the electrode but all these ideas have
to be validated through computation and experiment.

• Porous electrode
for high contact
probability

• Turbulent flow
to maximize
electrode
contact

• Moderate
pressure drop
across the cell

• Must have
electron transfer
with transient
contact
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First charging results

December 2012 data comparing x-ray absorption spectroscopy results on Cu6Sn5

anode material in a coin cell and flowing through a metal frit.
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Similar trends indicate that nanoparticles in the flow cell are charging, albeit
slowly and inefficiently.
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Initial prototype cell

Made from metal with machined posts
for increased contact area

Future designs manufactured with 3D
printing & metal electrode inserts
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CFD modeling

Inject 5000 particles and evolve for 15 s

Extend to repeated injections of 5000 particles and add electrochemical modeling
Illinois Institute of Technology Wichita State University October 22, 2014 11 / 30



Initial CFD results

Pressure field −→

Velocity field ↑
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Nanofluid settling

Li4Ti5O12 coated with a variety of organic molecules

0 hours

1 hour

2 hours

0.5 hours

1.5 hours

18 hours
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Nanoparticle electrochemical performance

LiNixMnyCozO2 non-aqueous cathode material

As received micron-sized particles (MTI Inc.)
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Nanoparticle electrochemical performance

LiNixMnyCozO2 non-aqueous cathode material

Ball milled ∼400 nm particles (MTI Inc.)
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Nanoparticle electrochemical performance
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MTI ball milled (2.5V-4.6V)

MTI ball milled (2.5V-4.3V)

• Nanoparticle-sized
LiNixMnyCozO2

has lower capacity
and more fading

• Cycling to 4.6 V
yields slightly
higher initial
capacity but faster
fading

• Solid electrolyte
interface (SEI)
layer is a significant
problem at high
potentials and for
nanoparticles
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Initial nanofluid charging tests
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Fe2O3 nanofluid charging

Fe2O3 cyclic voltammetry shows Li intercalation

• Performance of
nanofluid
equivalent to solid
nanoparticle
electrode

• Capacity increase
with cycles
indicates that it is
limited by
suboptimal
current collector

• Need to move to
flow-through
current collector
design
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Fe2O3 nanoparticle anode in a coin cell
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The EXAFS equation

The EXAFS oscillations can be modelled and interpreted using a conceptually
simple equation (the details are more subtle!)

χ(k) =
∑
j

NjS
2
0 fj(k)

kR2
j

e−2k2σ2
j e−2Rj/λ(k) sin [2Rj + δj(k)]

The sum could be over shells of atoms (Pt-Pt, Pt-Ni) or over scattering paths for
the photo-electron.

fj(k): scattering factor for the path
λ(k): photoelectron mean free path
δj(k): phase shift for the jth path

Nj : number of paths of type j
Rj : half path length
σj : path “disorder”

Ni

Pt

Pt

Ni Pt

Illinois Institute of Technology Wichita State University October 22, 2014 18 / 30



EXAFS analysis
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis pro-
duces evenly distributed
Sn3O2(OH)2 nanoparticles
on graphite nanoplatelets

XRD shows a small amount
of Sn metal in addition to
Sn3O2(OH)2
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In situ XAS studies of lithiation
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In situ battery box

Pouch cell clamped against front window in helium environment
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In situ battery box

Suitable for both transmission and fluorescence measurements
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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Abstract

We are currently in the first year of an ARPA-e project to
produce a prototype nanoelectrofuel flow battery. This new
battery concept marries the traditional solid state battery with
a flow battery to obtain higher energy densities. Successful
development of this new battery format requires the ability
to charge and discharge nanoparticle suspensions by transient
contact with the electrodes. While the basic effect has been
demonstrated, many challenges lie ahead. Notably the ability
to make efficient and high capacity battery materials in nanopar-
ticle form. In order to understand the differences between bat-
tery materials in macroscopic (micron-sized) and nanoparticle
form, we are using x-ray absorption spectroscopy to probe the
structure of materials as they are electrochemically cycled. I
will present some initial results on our in-situ studies of anode
lithiation and discuss our future plans.
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