
Today’s outline - November 11, 2024

• Final Project

• EXAFS Theory

• XAS Experiments

• Photoemission

Reading Assignment: Chapter 8.4

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Friday, November 15, 2024

Please send me your choices for General User
proposal and final exam presentation. I need
to approve them by the end of the week!
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Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!
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Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Thursday, May 4, 2023,
17:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 2 / 25



X-ray absorption: Fermi’s golden rule
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Absorbing Atom

Absorption
ProbabilityScattering Atom

µ(E ) = µ0(E ) + ∆µ(E )

= µ0(E )[1 + χ(E )]

χ(k[E ]) =
µ(E )− µ0(E )

µ0(E )
, k =

√
2m(E − E0)

ℏ2

µ(E ) ∼ |⟨i |H|f ⟩|2

⟨i | is the initial state which has a core level
electron and the photon. This is not altered by
the neighboring atom.

H is the interaction. In the dipole approxima-
tion, H = e ikr ≈ 1.

|f ⟩ is the final state which has a photoelectron, a hole in the core, and no photon. This is
altered by the neighboring atom: the photoelectron scatters.
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µ and χ and the photoelectron wavefunction

Writing |f ⟩ = |f0 +∆f ⟩, where ∆f gives the change in photoelectron final state due to
backscattering from the neighboring atom, we can expand µ to get

µ(E ) ∼ |⟨i |H|f ⟩|2 = ⟨i |H|f0 +∆f ⟩⟨f0 +∆f |H|i⟩
≈ ⟨i |H|f0⟩⟨f0|H|i⟩+ ⟨i |H|f0⟩⟨∆f |H|i⟩+ ⟨i |H|∆f ⟩⟨f0|H|i⟩+ · · ·
= |⟨i |H|f0⟩|2 + ⟨i |H|f0⟩⟨∆f |H|i⟩+ ⟨i |H|∆f ⟩⟨f0|H|i⟩

= |⟨i |H|f0⟩|2
[
1 +

⟨i |H|f0⟩⟨∆f |H|i⟩
|⟨i |H|f0⟩|2

+
⟨i |H|∆f ⟩⟨f0|H|i⟩

|⟨i |H|f0⟩|2
]

Compare this to µ(E ) = µ0(E )[1 + χ(E )] and we see that

µ0(E ) ∼ |⟨i |H|f0⟩|2
χ(E ) ∼ ⟨i |H|∆f ⟩ ∼ ⟨i |∆f ⟩

atomic background

XAFS oscillations

χ(E ) ∼ ⟨i |∆f ⟩ ∼
∫
ψcoreψscatt(r) dr ∼

∫
δ(r)ψscatt(r) dr = ψscatt(0)
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Computing the scattered wavefunction

E
0

E
n

e
rg

y

Absorbing Atom

Absorption
ProbabilityScattering Atom

Assume that emitted photoelectron is a spher-
ical wave

ψ(k , r) =
e ikr

kr

follow the electron as it:

a. leaves the absorbing atom

b. scatters from the neighbor atom

c. returns to the absorbing atom

χ(k) ∼ ψscatt(0) =
e ikR

kR
[2kf (k)e iδ(k)]

e ikR

kR
=

2e i(2kR+δ(k))

kR2
f (k)

where scattering from the neighboring atom gives the amplitude f (k) and phase-shift δ(k) to
the photoelectron
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Development of the EXAFS equation

Including the complex conjugate,

and simplifying

χ(k) ∼ 2f (k)

kR2

[
e i(2kR+δ(k)) + e−i(2kR+δ(k))

]
=

f (k)

kR2
cos [2kR + δ(k)]

incorporating an additional π/2 phase shift, we have the EXAFS equation for one scattering
atom

χ(k) =
f (k)

kR2
sin [2kR + δ(k)] −→ χ(k) =

Nf (k)e−2k2σ2

kR2
sin [2kR + δ(k)]

for N neighboring atoms, and with thermal and static disorder of σ2 giving the mean-square
disorder in R, we have

a real system has atoms at different distances and of different types so all these contributions
are summed to get a better version of the EXAFS equation:

χ(k) =
∑
j

Nj fj(k)e
−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]
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Scattering amplitude and phase shift: f (k) and δ(k)

The scattering amplitude f (k) and phase-shift
δ(k) depend on atomic number

The scattering amplitude f (k) peaks at differ-
ent k values and extends to higher-k for heav-
ier elements. For very heavy elements, there is
structure in f (k)

The phase shift δ(k) shows sharp changes for
very heavy elements

These functions can be calculated accurately
(say with the program FEFF) for modeling EX-
AFS

Z can usually be determined to ±5. Fe and O
can be distinguished, but Fe and Mn cannot be
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The EXAFS equation: What we left out

This simple description is qualitatively right, but for quantitative EXAFS calculations, it’s
important to consider these points:

Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of
the core-hole.

multiple scattering the photoelectron can scatter from multiple atoms. Most important at low
k, and leads to a path expansion.

Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a
muffin-tin approximation is most tractable.

Polarization Effects synchrotron beams are highly polarized, which needs to be taken into
account. This is simple for K -edges (s → p is dipole), and less so for L-edges
(where both p → d and p → s contribute).

Disorder Terms thermal and static disorder in real systems should be properly considered: A
topic of its own.

Generally, the calculations (FEFF, etc) include these effects. We’ll discuss of few of these in
more detail . . .
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The photoelectron mean-free path

χ(k) =
∑
j

Nj fj(k)e
−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a
spherical wave, ψ(k , r) ∼ e ikr/kr

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence
and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

Using a damped wavefunction instead ψ(k, r) ∼ e ikre−r/λ(k)

kr

where λ(k) is the photoelectron’s mean free path (including core-hole lifetime), the EXAFS
equation becomes:

χ(k) =
∑
j

Nj fj(k)e
−2Rj/λ(k)e−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]
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The photoelectron mean-free path

λ is mostly independent of the system, but depends strongly on k :
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for 3 Å−1 < k < 15 Å−1,
λ < 30 Å

along with the R−2 term this
makes EXAFS a local atomic
probe

for XANES (k < 3 Å−1), both λ
and R−2 become large: making
XANES not really a local probe
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S2
0 : Amplitude reduction term

Another important amplitude reduction term is due to the relaxation of the other electrons in
the absorbing atom to the hole in the core level:

S2
0 = |⟨ΦN−1

f |ΦN−1
0 ⟩|2

|ΦN−1
0 ⟩ = (N − 1) – electrons in unexcited atom

⟨ΦN−1
f | = (N − 1) – electrons, relaxed by core-hole

S2
0 is usually taken as a constant:

0.7 < S2
0 < 1.0

and is used as a fitting parameter that multiplies χ:

S2
0 is completely correlated with N (!!!)

This, and other experimental and theoretical issues, make EXAFS amplitudes (and therefore
N) less precise than EXAFS phases (and therefore R)
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The EXAFS equation

The full EXAFS equation can be used to model and interpret experimental data

χ(k) =
∑
j

NjS
2
0 fj(k)e

−2Rj/λ(k) e−2k2σ2
j

kRj
2

sin [2kRj + δj(k)]

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or . . .
. . . over possible scattering paths (preferred) of the photoelectron.

Nj : path degeneracy

Rj : half path length

σ2j : path “disorder”

S2
0 : amplitude reduction factor

k is the photoelectron wave number

fj(k): scattering factor for the path

δj(k): phase shift for the path

λ(k): photoelectron mean free path

Because we can compute f (k) and δ(k), and λ(k) we can determine Z, R, N, and σ2 for
scattering paths to neighboring atoms by fitting the data.
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Sum over paths and multiple scattering

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from
more than one atom before returning to the absorbing atom:

Single Scattering

Focussed Multiple Scattering Paths

Triangle Paths For multi-bounce paths, the total amplitude depends on the
angles in the photoelectron path

Triangle Paths with angles 45◦ < θ < 135◦ aren’t strong, but
there can be a lot of them

Linear paths, with angles θ ≈ 180◦, are very strong: the pho-
toelectron can be focused through one atom to the next

FEFF calculates these effects and includes them in f (k) and
δ(k) for the EXAFS equation so that all paths look the same
in the analysis

Multiple Scattering is strongest when θ > 150◦ and the strong angular dependence can be
used to measure bond angles

For first shell analysis, multiple scattering is hardly ever needed
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Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with graphite
to obtain composite
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Sn4P3/graphite composite shows stable, re-
versible capacity of 610 mAh/g for 100 cy-
cles at C/2 compared to rapidly fading pure
Sn4P3 material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 14 / 25



Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with graphite
to obtain composite

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Sp
ec

ifi
c 

C
ap

ac
ity

 (m
Ah

 g
-1
)

Cycle Number

Sn4P3/graphite composite shows stable, re-
versible capacity of 610 mAh/g for 100 cy-
cles at C/2 compared to rapidly fading pure
Sn4P3 material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 14 / 25



Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with graphite
to obtain composite

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Sp
ec

ifi
c 

C
ap

ac
ity

 (m
Ah

 g
-1
)

Cycle Number

Sn4P3/graphite composite shows stable, re-
versible capacity of 610 mAh/g for 100 cy-
cles at C/2 compared to rapidly fading pure
Sn4P3 material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 14 / 25



Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with graphite
to obtain composite

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Sp
ec

ifi
c 

C
ap

ac
ity

 (m
Ah

 g
-1
)

Cycle Number

Sn4P3/graphite composite shows stable, re-
versible capacity of 610 mAh/g for 100 cy-
cles at C/2 compared to rapidly fading pure
Sn4P3 material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 11, 2024 14 / 25



In situ EXAFS of Sn4P3/graphite
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Results for in situ coin cell are close to the capacity of the unmodified cell at C/4, indicating
good reversibility by the 3rd cycle.
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Third cycle comparison
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Even at the 100th delithiation, the Sn4P3/graphite composite measured ex situ is showing the
same features as at the 3rd cycle.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Sn4P3/graphite initial cycling

OCV spectrum fits well to Sn4P3 structure with an additional Sn-O path

Sn4P3 structure persists through first two cycles with possible enhancement of the Sn-Sn path
at 2.6 Å
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Sn4P3/graphite reversible cycling

On third lithiation (charge) the Sn-P path is gone and only Sn-Li remains

Delithiation (discharge) produces Sn-P and Sn-Sn paths which are not those of Sn4P3 but are
reversible
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Example fits

Fit EXAFS for bond lengths and co-
ordination numbers
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The Sn-O peak at OCV is due to ball
milling, which introduces oxygen.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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By the 3rd lithiated state, the EXAFS
is dominated by Sn-Li paths at 2.7
Å and 3.0 Å.
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At the 3rd delithiation, the Sn-P path
reappears but at a shorter distance, in
an amorphous SnPx phase.
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Sn4P3/graphite path lengths
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Sn-Sn distance close to those of metallic Sn
indicate the presence of small Sn clusters
which may never fully lithiate

Longer Sn-P distance characteristic of
Sn4P3 is gone after initial conversion to the
SnPx amorphous phase is complete

Only 2 Sn-Li paths present in this material

Sn-O distances remain constant, likely in-
dicative of surface contamination
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throughout
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state indicate a possibly tetrahedral Sn co-
ordination in SnPx
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The photoemission process

ϕ = Ev − EF

Photoemission is the complement to XAFS. It
probes the filled states below the Fermi level

The dispersion relation of electrons in a solid, E(q⃗)
can be probed by angle resolved photoemission
since both the kinetic energy, Ekin, and the an-
gle, θ are measured

Ekin, θ −→ E(q⃗)
The core levels are tightly bound at an energy EC
below the Fermi level

The work function, ϕ, is the minimum energy re-
quired to promote an electron from the top of the
valence band at the Fermi energy, EF , to the vac-
uum energy, Ev
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The photoemission process

With the incident photon energy, ℏω, held con-
stant, an analyzer is used to measure the kinetic
energy, Ekin, of the photoelectrons emitted from
the surface of the sample

if Ei is the initial energy of the electron, the binding
energy, EB is

EB = EF − Ei
and the measured kinetic energy gives the binding
energy

Ekin =
ℏ2q2v
2m

= ℏω − ϕ− EB
the maximum kinetic energy measured is thus re-
lated to the Fermi energy

the core states are used to fingerprint the chemical
composition of the sample
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Hemispherical mirror analyzer

The electric field between the two hemi-
spheres of radius R1 and R2 has a R

2 depen-
dence from the center of the hemispheres

Electrons with E0, called the “pass energy”,
will follow a circular path of radius

R0 = (R1 + R2)/2

Electrons with lower energy will fall inside
this circular path while those with higher en-
ergy will fall outside

Electrons with different azimuthal exit an-
gles ω will map to different positions on the
2D detector
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