
Today’s outline - November 04, 2024

• Dumond diagrams & monochromators

• Photoelectric absorption

• X-ray absorption spectroscopy

• EXAFS theory

Reading Assignment: Chapter 7.4

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Friday, November 15, 2024

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Monday, November 25, 2024
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Beam line ID32 @ ESRF
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Structure of Sn on Ge(111)

The low temperature 3 × 3 structure (dashed
line) is well known but the room temperature√
3×

√
3 surface structure (solid line) is unre-

solved

A sub-monolayer of Sn is evaporated on a
clean Ge(111) surface and studied using x-ray
standing wave stimulated photoelectron spec-
troscopy

Below 0.2 ML, the well known 2 × 2 structure
is measured as a reference

Above 0.2 ML, the
√
3×

√
3 structure appears

and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

With an incident energy of 2.5 keV, the 2× 2 and√
3×

√
3 structures are measured in an off-Bragg

condition

The lines for both the Sn 3d5/2 and 4d peaks in the
2× 2 phase are sharp, indicating a single chemical
state

The
√
3×

√
3 structure shows two distinct chemi-

cal shifts, with the majority component, I1, having
a slightly lower binding energy than the minority
component, I2

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

By varying the energy with a resolution of 500
meV, the standing wave is swept through the Sn
layer

As the energy is scanned around the center of
the Ge(111) reflection, the fits using a mixture of
Gaussian and Lorentzian line shapes show that the
relative intensity, I1/I2 varies

At ∆Eγ = 0.45 eV, the I1/I2 ratio almost com-
pletely inverts, showing that the two atom popu-
lations are at different heights above the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

The normalized peak intensities can be fitted to
extract the relative positions of the two popula-
tions of atoms and their atomic ratio

Population 1 is two times larger than population 2
and is located a height ∆h = 0.23 Å further from
the Ge(111) surface

Population 1 also has a lower binding energy,
demonstrating that the binding energy is directly
correlated to the height from the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

−→ He =
Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

−→ He =
Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

−→ He =
Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

−→ He =
Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He = δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi =
1√
b
(ζD tan θ)bHe

=
√
b(ζD tan θ)He = δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi =
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)
−→ He =

Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi =
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He = δθeHe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 8 / 18



Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution of the Darwin curves
of both crystals.

When the two crystals have a matched asymmetry, we get a triangle. When
one asymmetry is much higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right
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Dumond diagram: no Darwin width

Transfer function of an optical
element parametrized by angle
and wavelength.

Here Darwin
width is ignored.

for small angular deviations
sin θ is linear with a slope of
cos θB

non-zero diffracted beam only
for points on the line

a horizontal line transfers input
to output beam characteristics

0 0θi-θB θe-θB

 λ

2d

∆θ

cosθΒ ∆θ

s
in

θ
B

θeθi
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Dumond diagram: symmetric Bragg

0 0θi-θB θe-θB
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If Darwin width is included, the
Bragg condition is represented
by a box

for a perfectly collimated (no
angular divergence) input
beam, a bandwidth of radiation
is accepted by the crystal

this input bandwidth is trans-
ferred to a similar output band-
width which is also collimated
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Dumond diagram: asymmetric Bragg

0 0θi-θB θe-θB
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2d w0  b
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θe

θi

For an asymmetric crystal, the
output beam is no longer col-
limated but acquires a diver-
gence αe

a perfectly collimated input
beam transfers to an output
beam that has an angular di-
vergence which depends on the
asymmetry factor b

this is in addition to a compres-
sion (in this case) of the beam
height (Liouville’s theorem!)
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Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve

θ

 λ

2d

2∆θi

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 November 04, 2024 13 / 18



Double crystal monochromators: Dispersive

∆θin

the transfer function matches only in a small
energy band that varies with angle of the second
crystal, mapping out the Darwin curve of the
first crystal θ
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2d

2∆θi
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Asymmetric monochromator at ELETTRA

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2◦ grazing incidence in
order to spread the heat load

The three crystals are set for single energies of 5.6, 8.0, and 16 keV with a vertical
displacement of 1.5 m and asymmetry parameter, b, of 0.053, 0.078, and 0.17, respectively

“High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA,” S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron
Rad. 5, 1215-1221 (1998).
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Total cross section

The total cross-section for photon
“absorption” includes elastic (or co-
herent) scattering, Compton (inelas-
tic) scattering, and photoelectric ab-
sorption.

Characteristic absorption jumps de-
pend on the element

These quantities vary significantly
over many decades but can easily put
on an equal footing.
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Scaled absorption

T =
I

I0
= e−µz

µ =
ρmNA

M
σa

σa ∼
Z 4

E 3

σa can be scaled for different elements
by E 3/Z 4 and plotted together

remarkably, all values lie on a common
curve above the K edge and between
the L and K edges and below the L
edge
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Absorption edge nomenclature

The states are labeled according to the prin-
cipal, orbital angular momentum, and total
angular momentum quantum numbers, n, l ,
and j , respectively

The absorption edges are labeled according
to the initial principal quantum number of
the photoelectron:

n = 1 −→ K

n = 2 −→ L

n = 3 −→ M

Roman numerals increase from low to high
values of l and j
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