
Today’s outline - October 30, 2024

• The Darwin curve

• Extinction & absorption

• Standing waves

• Dumond diagrams & monochromators

Reading Assignment: Chapter 7.2-3

Homework Assignment #05:
Chapter 5: 1,2,7,9,10
due Friday, November 01, 2024

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Monday, November 11, 2024
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Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0 using the solution and
the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

S0 = −igT0 + (1− ig0)S1e
iϕ

S0 = −igT0 + (1− ig0)S0e
−ηe imπe imπe i∆

S0
[
1− (1− ig0)e

−ηe i2mπe i∆
]
= −igT0

S0
T0

≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)
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Darwin reflectivity curve

r =
S0
T0

=
g

iη + (∆− g0)

=
g

iη + ϵ
=

g

ϵ±
√

ϵ2 − g2
=

1

x ±
√
x2 − 1

It is convenient to express the reflection coefficient in terms of reduced units using

ϵ = ∆− g0,

iη = ±
√

ϵ2 − g2

,

and the reduced variable x = ϵ/g

0

1

-3 -2 -1  0  1  2  3

-π

0

R
e

fl
e

c
ti
v
it
y

R
e

la
ti
v
e

 p
h

a
s
e

 s
h

if
t

x=ε/g

R(x) = |r |2 =


(x −

√
x2 − 1)2 x ≥ 1

1 |x | ≤ 1

(x +
√
x2 − 1)2 x ≤ −1

the Darwin curve goes like (g/2ϵ)2 in the kine-
matic region consistent with the kinematic limit

the relative phase between the scattered and trans-
mitted waves varies from out of phase at x = −1
to in phase at x = +1
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Darwin width
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The width of the Darwin curve is ∆x = 2 which is
related to the relative offset, ζ by

ζ =
gx + g0
mπ

ζtotalD =
2g

mπ
=

4

π

(
d

m

)2 r0|F |
vc

ζFWHM
D =

(
3

2
√
2

)2
ζtotalD

the Darwin width, ζD is independent of wavelength
and only depends on the material and Bragg reflec-
tion

the angular Darwin width, wD , varies as the angle changes

∆λ

λ
=

∆θ

θ
−→ w total

D = ζtotalD tan θ, wFWHM
D

(
3

2
√
2

)2
ζtotalD tan θ
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Extinction depth

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of
atoms by an amount e−Re{η}

the characteristic length for the attenuation is
defined by an effective number of reflecting lay-
ers, Neff such that

multiplying by the layer spacing, d , gives the
extinction depth

recalling that η = g
√
1− x2, implies that Λext

varies across the Darwin reflectivity curve

e−Neff Re{η} = e−1/2 −→ Neff =
1

2Re{η}

Λext = Neff d =
d

2Re{η}

x → ±1, η → 0, Λext → ∞

Thus absorption processes, which have been neglected up to now are the sole determinant of
the extinction depth in a perfect crystal. For x = 0 and η = g , the actual extinction depth is

Λext(x = 0) =
d

2g
=

1

4

(m
d

) vc
r0|F |
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Extinction depth for GaAs

The extinction depth depends on the structure factor and
thus will vary significantly depending on the strength of
the particular Bragg reflection

Λext(x = 0) =
1

4

(m
d

) vc
r0|F |

For the strong (400) reflection of GaAs

FGaAs(400) = 4× [fGa(400) + fAs(400)] = 4× [f 0Ga(400) + f ′Ga + if ′′Ga + f 0As(400) + f ′As + if ′′As ]

= 4× [25.75− 1.28− 0.78i + 27.14− 0.93− 1.00i ] = 154.0− 7.1i

for λ = 1.54056 Å, vc = 180.7 Å, and d400 = 1.41335 Å the extinction depth is
Λext(400) = 0.74µm while the absorption depth, sin θ/2µ = 7.95µm, is more than 10 times
larger

For the weak (200) reflection of GaAs

FGaAs(200) = 4× [fGa(200)− fAs(200)] = 4× [f 0Ga(200) + f ′Ga + if ′′Ga − f 0As(200)− f ′As − if ′′As ]

= 4× [19.69− 1.28− 0.78i − 21.05 + 0.93 + 1.00i ] = −6.96− 0.91i

so that Λext(200) = 8.1µm and sin θ/2µ = 3.9µm, which is 2 times smaller
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Integrated intensity

Starting with the expression for the
Darwin curve it is possible to inte-
grate and compute the integrated
intensity of the reflected x-rays

converting into an integrated in-
tensity in terms of the variable ζ

R(x) =


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converting to angle and including the incident flux (Φ0), cross-sectional area (A0) of the beam,
polarization factor and Debye-Waller factor, the scattered intensity from a perfect crystal is

IPSC = Φ0A0
8λ2r0|F |
6πvc sin
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tan θ

(
1 + | cos 2θ|
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Intensity comparison

Comparing the integrated intensity from a perfect crystal with that which was calculated for a
mosaic crystal

Perfect crystal

IPSC =
8Φ0A0λ

2r0|F |
3πvc sin 2θ

(
1 + | cos 2θ|

2

)
e−M

Mosaic crystal

IMSC =
Φ0A0λ

3r20 |F |2

2µv2c sin 2θ

(
1 + cos2 2θ

2

)
e−2M

Taking the ratio of these two intensities shows that the intensity from a mosiac crystal is
significantly different than from a perfect crystal

IMSC
IPSC

=

(
3π

16

)
λr0|F |
µvc

(
1 + cos2 2θ

1 + | cos 2θ|

)
e−M ∝

(
3π

16

)
λr0|F |
µvc

For the strong (400) reflection of GaAs this approximate ratio is IMSC/I
P
SC ≈ 6 while for the

weak (200) reflection it is IMSC/I
P
SC ≈ 0.2
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Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

The
width varies as the inverse squared.

ζ0 =
g0
π

=
2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center of a lower order
reflection, the high orders can be effec-
tively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This is called “detuning”.
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Angular offset

We can calculate the angular offset by noting that the offset and width have many common
factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0
m

=
ζD
2

|F |
|F0|

∆θoff =
ζD
2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å : ωtotal
D = 0.0020◦, ∆θoff = 0.0018◦
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Darwin widths

the quantities below the widths are f 0(Q), f ′, and f ′′ (for λ = 1.5405 Å). For an angular
width, multiply times tan θ and for π polarization, multiply by cos(2θ).
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Absorption effects

The transmitted and scattered waves in a perfect crystal have both a phase shift and an
attenuation due to absorption

the phase shift is proportional to g0 which is real, however, by adding an imaginary
component, absorption can be included in the model

g0 =

(
2d2r0
mvc

)
F0

F0 =
∑
j

(Zj + f ′j + if ′′j )

g =

(
2d2r0
mvc

)
F

F0 =
∑
j

(f 0j (Q⃗)j + f ′j + if ′′j )e
i Q⃗ ·⃗rj

the variable x that parametrizes
the reflectivity now is complex

xc = mπ
ζ

g
− g0

g

r(xc) =


1

xc+
√

x2c−1
≈ xc −

√
x2c − 1 Re{xc} ≥ +1

1

xc+i
√

x2c−1
≈ xc − i

√
x2c − 1 |Re{xc}| ≤ 1

1

xc−
√

x2c−1
≈ xc +

√
x2c − 1 Re{xc} ≤ −1
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Absorption and the Darwin curve

Silicon (111) Darwin curves

solid line is for λ = 0.70926 Å

dashed line is for λ = 1.5405 Å

absorption is highest at x = +1 since the
standing wave field is in phase with the
atomic planes

absorption is reduced for higher energies

note that width of Darwin curve is indepen-
dent of wavelength
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Energy dependence

The angular Darwin width, wD does depend on energy and polarization of the beam
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Standing waves

T S

y

z

When the Bragg condition is met for a perfect crystal, the
total wavefield above the crystal is made up of the incident
and diffracted wavefields, T ∝ e ikyye ikzz and S ∝ e ikyye−ikzz

at the crystal surface, z = 0 the amplitudes are given by T0,
and S0 and the total wavefield for z < 0 is

Atot = T0e
ikyy

[
e ikzz + re−ikzz

]
, r(x = ϵ/g) = |r(x)|e iϕ

I (z , x) = T 2
0

[
e ikzz + |r |e iϕe−ikzz

] [
e−ikzz + |r |e−iϕe+ikzz

]
= T 2

0

[
1 + |r |2 + |r |e iϕe−i2kzz + |r |e−iϕe i2kzz

]
= T 2

0

[
1 + |r |2 + 2|r | cos(ϕ− Qz)

]
as x varies along the Darwin curve, the phase of the standing
wave at a position z varies by π
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Standing wave experiments

Once a standing wave is established by diffraction from a per-
fect crystal, the nodes can be shifted in space by traversing the
rocking curve

As the antinodes of the standing wave sweep past atoms in the
crystal or on the surface, they will emit photoelectrons

An electron or flourescence spectrometer is used to detect the
signals and determine bond distances

This can be done most effectively by tuning the energy through
the Darwin width of the rocking curve

A high resolution monochromator is required for this kind of
experiment
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