



• The Darwin curve



- The Darwin curve
- Extinction & absorption

V

- The Darwin curve
- Extinction & absorption
- Standing waves

V

- The Darwin curve
- Extinction & absorption
- Standing waves
- Dumond diagrams & monochromators



- The Darwin curve
- Extinction & absorption
- Standing waves
- Dumond diagrams & monochromators

Reading Assignment: Chapter 7.2-3



- The Darwin curve
- Extinction & absorption
- Standing waves
- Dumond diagrams & monochromators

Reading Assignment: Chapter 7.2-3

Homework Assignment #05: Chapter 5: 1,2,7,9,10 due Friday, November 01, 2024

V

- The Darwin curve
- Extinction & absorption
- Standing waves
- Dumond diagrams & monochromators

Reading Assignment: Chapter 7.2-3

Homework Assignment #05: Chapter 5: 1,2,7,9,10 due Friday, November 01, 2024 Homework Assignment #06: Chapter 6: 1,6,7,8,9 due Monday, November 11, 2024

V







$$egin{aligned} S_{j+1} &= e^{-\eta} e^{im\pi} S_j \ S_j &= -i g T_j + (1-i g_0) S_{j+1} e^{i\phi} \end{aligned}$$





$$egin{aligned} S_1 &= e^{-\eta} e^{im\pi} S_0 \ S_j &= -igT_j + (1-ig_0)S_{j+1}e^{i\phi} \end{aligned}$$





$$S_1 = e^{-\eta} e^{im\pi} S_0$$
  
$$S_0 = -ig T_0 + (1 - ig_0) S_1 e^{i\phi}$$



$$S_1 = e^{-\eta} e^{im\pi} S_0$$
  

$$S_0 = -ig T_0 + (1 - ig_0) S_1 e^{i\phi}$$

$$S_0=-i g \, {\mathcal T}_0+(1-i g_0) S_0 e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}$$



In order to calculate the absolute reflectivity curve, solve for  $S_0$  and  $T_0$  using the solution and the recursive relations.



$$S_{1} = e^{-\eta} e^{im\pi} S_{0}$$

$$S_{0} = -ig T_{0} + (1 - ig_{0}) S_{1} e^{i\phi}$$

$$S_{0} = -ig T_{0} + (1 - ig_{0}) S_{0} e^{-\eta} e^{im\pi} e^{im\pi} e^{i\Delta}$$

$$S_{0} \left[ 1 - (1 - ig_{0}) e^{-\eta} e^{i2m\pi} e^{i\Delta} \right] = -ig T_{0}$$



In order to calculate the absolute reflectivity curve, solve for  $S_0$  and  $T_0$  using the solution and the recursive relations.



$$S_{1} = e^{-\eta} e^{im\pi} S_{0}$$

$$S_{0} = -ig T_{0} + (1 - ig_{0}) S_{1} e^{i\phi}$$

$$S_{0} = -ig T_{0} + (1 - ig_{0}) S_{0} e^{-\eta} e^{im\pi} e^{im\pi} e^{i\Delta}$$

$$S_{0} \left[ 1 - (1 - ig_{0}) e^{-\eta} e^{i2m\pi} e^{i\Delta} \right] = -ig T_{0}$$

$$rac{S_0}{T_0}pprox rac{-ig}{1-(1-ig_0)(1-\eta)(1+i\Delta)}$$



In order to calculate the absolute reflectivity curve, solve for  $S_0$  and  $T_0$  using the solution and the recursive relations.



$$\frac{S_0}{T_0} \approx \frac{-ig}{1 - (1 - ig_0)(1 - \eta)(1 + i\Delta)} \approx \frac{-ig}{ig_0 + \eta - i\Delta}$$

PHYS 570 - Fall 2024



In order to calculate the absolute reflectivity curve, solve for  $S_0$  and  $T_0$  using the solution and the recursive relations.



$$\frac{\overline{\sigma}}{\overline{T_0}} \approx \frac{\overline{\overline{J}}}{1 - (1 - ig_0)(1 - \eta)(1 + i\Delta)} \approx \frac{\overline{\overline{J}}}{ig_0 + \eta - i\Delta} = \frac{\overline{J}}{i\eta + (\Delta - g_0)}$$

PHYS 570 - Fall 2024





$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)}$$

,

It is convenient to express the reflection coefficient in terms of reduced units using

$$\epsilon=\Delta-g_0$$
 ,



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon}$$

,

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0$  ,



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon}$$

It is convenient to express the reflection coefficient in terms of reduced units using

$$\epsilon=\Delta-g_{0},\ i\eta=\pm\sqrt{\epsilon^{2}-g^{2}}$$
 ,



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

$$\epsilon=\Delta-g_{0},\ i\eta=\pm\sqrt{\epsilon^{2}-g^{2}}$$
 ,



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon = \Delta - g_0$ ,  $i\eta = \pm \sqrt{\epsilon^2 - g^2}$ , and the reduced variable  $x = \epsilon/g$ 



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}} = \frac{1}{x \pm \sqrt{x^2 - 1}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0,~i\eta=\pm\sqrt{\epsilon^2-g^2}$ , and the reduced variable  $x=\epsilon/g$ 



$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}} = \frac{1}{x \pm \sqrt{x^2 - 1}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0,~i\eta=\pm\sqrt{\epsilon^2-g^2},~$  and the reduced variable  $x=\epsilon/g$ 

$$R(x) = |r|^2 = egin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1 \ 1 & |x| \le 1 \ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$



PHYS 570 - Fall 2024

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0,~i\eta=\pm\sqrt{\epsilon^2-g^2},~$  and the reduced variable  $x=\epsilon/g$ 



$${f R}(x) = |r|^2 = egin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1 \ 1 & |x| \le 1 \ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$

$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}} = \frac{1}{x \pm \sqrt{x^2 - 1}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0,~i\eta=\pm\sqrt{\epsilon^2-g^2},~$  and the reduced variable  $x=\epsilon/g$ 



$$R(x) = |r|^2 = egin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1 \ 1 & |x| \le 1 \ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$

the Darwin curve goes like  $(g/2\epsilon)^2$  in the kinematic region consistent with the kinematic limit

$$r = \frac{S_0}{T_0} = \frac{g}{i\eta + (\Delta - g_0)} = \frac{g}{i\eta + \epsilon} = \frac{g}{\epsilon \pm \sqrt{\epsilon^2 - g^2}} = \frac{1}{x \pm \sqrt{x^2 - 1}}$$

It is convenient to express the reflection coefficient in terms of reduced units using

 $\epsilon=\Delta-g_0,~i\eta=\pm\sqrt{\epsilon^2-g^2},~$  and the reduced variable  $x=\epsilon/g$ 



$$R(x) = |r|^2 = egin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1 \ 1 & |x| \le 1 \ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$

the Darwin curve goes like  $(g/2\epsilon)^2$  in the kinematic region consistent with the kinematic limit

the relative phase between the scattered and transmitted waves varies from out of phase at x = -1 to in phase at x = +1







V

$$\zeta = \frac{gx + g_0}{m\pi}$$



V

$$\zeta = \frac{gx + g_0}{m\pi}$$
$$\zeta_D^{total} = \frac{2g}{m\pi}$$



$$\zeta = \frac{gx + g_0}{m\pi}$$
$$\zeta_D^{total} = \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0|F|}{v_c}$$



$$\begin{split} \zeta &= \frac{g \times + g_0}{m \pi} \\ \zeta_D^{total} &= \frac{2g}{m \pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0 |F|}{v_c} \\ \zeta_D^{FWHM} &= \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total} \end{split}$$



V

The width of the Darwin curve is  $\Delta x = 2$  which is related to the relative offset,  $\zeta$  by

$$\zeta = \frac{gx + g_0}{m\pi}$$

$$\zeta_D^{total} = \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0|F|}{v_c}$$

$$F_D^{FWHM} = \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total}$$

the Darwin width,  $\zeta_D$  is independent of wavelength and only depends on the material and Bragg reflection

ζ



**V** 

The width of the Darwin curve is  $\Delta x = 2$  which is related to the relative offset,  $\zeta$  by

$$\zeta = \frac{g_{X} + g_{0}}{m\pi}$$

$$\zeta_{D}^{total} = \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}}$$

$$F_{D}^{FWHM} = \left(\frac{3}{2\sqrt{2}}\right)^{2} \zeta_{D}^{total}$$

the Darwin width,  $\zeta_D$  is independent of wavelength and only depends on the material and Bragg reflection

the angular Darwin width,  $w_D$ , varies as the angle changes

Ć



The width of the Darwin curve is  $\Delta x = 2$  which is related to the relative offset,  $\zeta$  by

$$\zeta = \frac{gx + g_0}{m\pi}$$
$$\zeta_D^{total} = \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0|F|}{v_c}$$
$$F_D^{FWHM} = \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total}$$

the Darwin width,  $\zeta_D$  is independent of wavelength and only depends on the material and Bragg reflection

the angular Darwin width,  $w_D$ , varies as the angle changes

$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta\theta}{\theta}$$

Carlo Segre (Illinois Tech)

ζ



The width of the Darwin curve is  $\Delta x = 2$  which is related to the relative offset,  $\zeta$  by

$$\zeta = \frac{gx + g_0}{m\pi}$$
$$\zeta_D^{total} = \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0|F|}{v_c}$$
$$F_D^{FWHM} = \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total}$$

the Darwin width,  $\zeta_D$  is independent of wavelength and only depends on the material and Bragg reflection

the angular Darwin width,  $w_D$ , varies as the angle changes

$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta\theta}{\theta} \qquad \longrightarrow \qquad w_D^{total} = \zeta_D^{total} \tan\theta,$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

ζ
#### Darwin width



The width of the Darwin curve is  $\Delta x = 2$  which is related to the relative offset,  $\zeta$  by

$$\begin{aligned} \zeta &= \frac{gx + g_0}{m\pi} \\ \zeta_D^{total} &= \frac{2g}{m\pi} = \frac{4}{\pi} \left(\frac{d}{m}\right)^2 \frac{r_0 |F|}{v_c} \\ \zeta_D^{FWHM} &= \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total} \end{aligned}$$

the Darwin width,  $\zeta_D$  is independent of wavelength and only depends on the material and Bragg reflection

the angular Darwin width,  $w_D$ , varies as the angle changes

$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta\theta}{\theta} \qquad \longrightarrow \qquad w_D^{total} = \zeta_D^{total} \tan\theta, \qquad w_D^{FWHM} \left(\frac{3}{2\sqrt{2}}\right)^2 \zeta_D^{total} \tan\theta$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024





An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

$$e^{-N_{eff}Re\{\eta\}}=e^{-1/2}$$

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{\eta\}}$$



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

 $e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{n\}}$ 



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff} d$$



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$



## atoms by an amount $e^{-Re\{\eta\}}$

Extinction depth

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing,  $d, \ensuremath{\operatorname{gives}}$  the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$  varies across the Darwin reflectivity curve

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of



## atoms by an amount $e^{-Re\{\eta\}}$

Extinction depth

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing,  $d, \ensuremath{\operatorname{gives}}$  the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$   $x \to \pm 1$ , varies across the Darwin reflectivity curve

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of



#### atoms by an amount $e^{-Re\{\eta\}}$ the characteristic length for t

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing,  $d,\ {\rm gives}$  the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$  varies across the Darwin reflectivity curve

$$e^{-N_{eff}Re\{\eta\}}=e^{-1/2} \longrightarrow N_{eff}=rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

 $x
ightarrow\pm 1,~~\eta
ightarrow 0,$ 

#### Extinction depth

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of



#### atoms by an amount $e^{-Re\{\eta\}}$ the characteristic length for t

Extinction depth

the characteristic length for the attenuation is defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing,  $d,\ {\rm gives}$  the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$  varies across the Darwin reflectivity curve

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = \frac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

$$x \to \pm 1, \quad \eta \to 0, \quad \Lambda_{ext} \to \infty$$

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of



defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$ x varies across the Darwin reflectivity curve

Thus absorption processes, which have been neglected up to now are the sole determinant of the extinction depth in a perfect crystal.

#### Extinction depth

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

$$ightarrow \pm 1, \quad \eta 
ightarrow 0, \quad \Lambda_{ext} 
ightarrow \infty$$

defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$  $x \to \pm 1, \quad n \to 0, \quad \Lambda_{ext} \to \infty$ varies across the Darwin reflectivity curve

Thus absorption processes, which have been neglected up to now are the sole determinant of the extinction depth in a perfect crystal. For x = 0 and  $\eta = g$ , the actual extinction depth is

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount 
$$e^{-Re\{\eta\}}$$

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{1}{2Re\{\eta\}}$$

defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$  $x \to \pm 1, \quad \eta \to 0, \quad \Lambda_{ext} \to \infty$ varies across the Darwin reflectivity curve

Thus absorption processes, which have been neglected up to now are the sole determinant of the extinction depth in a perfect crystal. For x = 0 and  $\eta = g$ , the actual extinction depth is

$$\Lambda_{ext}(x=0)=\frac{d}{2g}$$

### Extinction depth

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount  $e^{-Re\{\eta\}}$ 

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$



a

defined by an effective number of reflecting layers,  $N_{eff}$  such that

multiplying by the layer spacing, d, gives the extinction depth

recalling that  $\eta = g\sqrt{1-x^2}$ , implies that  $\Lambda_{ext}$ 0 varies across the Darwin reflectivity curve

Thus absorption processes, which have been neglected up to now are the sole determinant of the extinction depth in a perfect crystal. For x = 0 and  $\eta = g$ , the actual extinction depth is

$$\Lambda_{ext}(x=0) = \frac{d}{2g} = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0 |F|}$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024



An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of atoms by an amount 
$$e^{-Re\{\eta\}}$$

$$e^{-N_{eff}Re\{\eta\}} = e^{-1/2} \longrightarrow N_{eff} = rac{1}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{d}{2Re\{\eta\}}$$

$$\Lambda_{ext} = N_{eff}d = \frac{1}{2Re\{\eta\}}$$

$$\kappa 
ightarrow \pm 1, \quad \eta 
ightarrow 0, \quad \Lambda_{ext} 
ightarrow \infty$$

The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

For the strong (400) reflection of GaAs



$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

For the strong (400) reflection of GaAs

 $F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)]$ 

V

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

 $F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}'']$ 



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$\begin{aligned} F_{GaAs}(400) &= 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}'' \\ &= 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] \end{aligned}$$



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$\begin{aligned} F_{GaAs}(400) &= 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^0(400) + f_{Ga}' + if_{Ga}'' + f_{As}^0(400) + f_{As}' + if_{As}''] \\ &= 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i \end{aligned}$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu$ m

The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{\text{ext}}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs

 $F_{GaAs}(200) = 4 \times [f_{Ga}(200) - f_{As}(200)]$ 



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs

$$F_{GaAs}(200) = 4 \times [f_{Ga}(200) - f_{As}(200)] = 4 \times [f_{Ga}^{0}(200) + f_{Ga}' + if_{Ga}'' - f_{As}^{0}(200) - f_{As}' - if_{As}'']$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs

$$F_{GaAs}(200) = 4 \times [f_{Ga}(200) - f_{As}(200)] = 4 \times [f_{Ga}^{0}(200) + f_{Ga}' + if_{Ga}'' - f_{As}^{0}(200) - f_{As}' - if_{As}''] = 4 \times [19.69 - 1.28 - 0.78i - 21.05 + 0.93 + 1.00i]$$

Carlo Segre (Illinois Tech)



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs

$$F_{GaAs}(200) = 4 \times [f_{Ga}(200) - f_{As}(200)] = 4 \times [f_{Ga}^{0}(200) + f_{Ga}' + if_{Ga}'' - f_{As}^{0}(200) - f_{As}' - if_{As}''] = 4 \times [19.69 - 1.28 - 0.78i - 21.05 + 0.93 + 1.00i] = -6.96 - 0.91i$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024



The extinction depth depends on the structure factor and thus will vary significantly depending on the strength of the particular Bragg reflection

$$\Lambda_{ext}(x=0) = \frac{1}{4} \left(\frac{m}{d}\right) \frac{v_c}{r_0|F|}$$

For the strong (400) reflection of GaAs

$$F_{GaAs}(400) = 4 \times [f_{Ga}(400) + f_{As}(400)] = 4 \times [f_{Ga}^{0}(400) + f_{Ga}' + if_{Ga}'' + f_{As}^{0}(400) + f_{As}' + if_{As}''] = 4 \times [25.75 - 1.28 - 0.78i + 27.14 - 0.93 - 1.00i] = 154.0 - 7.1i$$

for  $\lambda = 1.54056$  Å,  $v_c = 180.7$  Å, and  $d_{400} = 1.41335$  Å the extinction depth is  $\Lambda_{ext}(400) = 0.74 \,\mu\text{m}$  while the absorption depth,  $\sin \theta / 2\mu = 7.95 \,\mu\text{m}$ , is more than 10 times larger

For the weak (200) reflection of GaAs

$$\begin{aligned} F_{GaAs}(200) &= 4 \times [f_{Ga}(200) - f_{As}(200)] = 4 \times [f_{Ga}^{0}(200) + f_{Ga}' + if_{Ga}'' - f_{As}^{0}(200) - f_{As}' - if_{As}''] \\ &= 4 \times [19.69 - 1.28 - 0.78i - 21.05 + 0.93 + 1.00i] = -6.96 - 0.91i \end{aligned}$$

so that  $\Lambda_{ext}(200) = 8.1 \,\mu\text{m}$  and  $\sin \theta / 2\mu = 3.9 \,\mu\text{m}$ , which is 2 times smaller

PHYS 570 - Fall 2024



$$R(x) = egin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1 \ 1 & |x| \le 1 \ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$



$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx$$



$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx$$



$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$



Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\boldsymbol{\zeta}$ 

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi}$$

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$



Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta}$$

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$


Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta} = \frac{8}{3} \frac{1}{m\pi} 2\left(\frac{m\lambda}{2\sin\theta}\right)^2 \frac{|F|r_0}{mv_c}$$



Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta} = \frac{8}{3} \frac{1}{m\pi} 2\left(\frac{m\lambda}{2\sin\theta}\right)^2 \frac{|F|r_0}{mv_c} = \frac{8\lambda^2 r_0|F|}{6\pi v_c \sin^2 \theta}$$



7/16

Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta} = \frac{8}{3} \frac{1}{m\pi} 2\left(\frac{m\lambda}{2\sin\theta}\right)^2 \frac{|F|r_0}{mv_c} = \frac{8\lambda^2 r_0|F|}{6\pi v_c \sin^2 \theta}$$

converting to angle and including the incident flux  $(\Phi_0)$ , cross-sectional area  $(A_0)$  of the beam, polarization factor and Debye-Waller factor, the scattered intensity from a perfect crystal is





Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta} = \frac{8}{3} \frac{1}{m\pi} 2\left(\frac{m\lambda}{2\sin\theta}\right)^2 \frac{|F|r_0}{mv_c} = \frac{8\lambda^2 r_0|F|}{6\pi v_c \sin^2 \theta}$$

converting to angle and including the incident flux  $(\Phi_0)$ , cross-sectional area  $(A_0)$  of the beam, polarization factor and Debye-Waller factor, the scattered intensity from a perfect crystal is

$$I_{SC}^{P} = \Phi_0 A_0 \frac{8\lambda^2 r_0 |F|}{6\pi v_c \sin^2 \theta} \tan \theta \left(\frac{1 + |\cos 2\theta|}{2}\right) e^{-M}$$

Carlo Segre (Illinois Tech)



Starting with the expression for the Darwin curve it is possible to integrate and compute the integrated intensity of the reflected x-rays

converting into an integrated intensity in terms of the variable  $\zeta$ 

$$R(x) = \begin{cases} (x - \sqrt{x^2 - 1})^2 & x \ge 1\\ 1 & |x| \le 1\\ (x + \sqrt{x^2 - 1})^2 & x \le -1 \end{cases}$$
$$\int_{-\infty}^{\infty} R(x) dx = 2 + 2 \int_{1}^{\infty} (x - \sqrt{x^2 - 1})^2 dx = \frac{8}{3}$$

$$I_{\zeta} = \frac{8}{3} \frac{g}{m\pi} = \frac{8}{3} \frac{1}{m\pi} \frac{2d^2|F|}{v_c \sin^2 \theta} = \frac{8}{3} \frac{1}{m\pi} 2\left(\frac{m\lambda}{2\sin\theta}\right)^2 \frac{|F|r_0}{mv_c} = \frac{8\lambda^2 r_0|F|}{6\pi v_c \sin^2 \theta}$$

converting to angle and including the incident flux ( $\Phi_0$ ), cross-sectional area ( $A_0$ ) of the beam, polarization factor and Debye-Waller factor, the scattered intensity from a perfect crystal is

$$I_{SC}^{P} = \Phi_0 A_0 \frac{8\lambda^2 r_0 |F|}{6\pi v_c \sin^2 \theta} \tan \theta \left(\frac{1 + |\cos 2\theta|}{2}\right) e^{-M} = \frac{8\Phi_0 A_0 \lambda^2 r_0 |F|}{3\pi v_c \sin 2\theta} \left(\frac{1 + |\cos 2\theta|}{2}\right) e^{-M}$$

Carlo Segre (Illinois Tech)





Comparing the integrated intensity from a perfect crystal with that which was calculated for a mosaic crystal

Perfect crystal

$$I_{SC}^{P} = \frac{8\Phi_0 A_0 \lambda^2 r_0 |F|}{3\pi v_c \sin 2\theta} \left(\frac{1+|\cos 2\theta|}{2}\right) e^{-M}$$

Comparing the integrated intensity from a perfect crystal with that which was calculated for a mosaic crystal

Perfect crystal  

$$I_{SC}^{P} = \frac{8\Phi_{0}A_{0}\lambda^{2}r_{0}|F|}{3\pi v_{c}\sin 2\theta} \left(\frac{1+|\cos 2\theta|}{2}\right)e^{-M} \qquad I_{SC}^{M} = \frac{\Phi_{0}A_{0}\lambda^{3}r_{0}^{2}|F|^{2}}{2\mu v_{c}^{2}\sin 2\theta} \left(\frac{1+\cos^{2}2\theta}{2}\right)e^{-2M}$$

Comparing the integrated intensity from a perfect crystal with that which was calculated for a mosaic crystal

Perfect crystal  

$$I_{SC}^{P} = \frac{8\Phi_{0}A_{0}\lambda^{2}r_{0}|F|}{3\pi v_{c}\sin 2\theta} \left(\frac{1+|\cos 2\theta|}{2}\right)e^{-M} \qquad I_{SC}^{M} = \frac{\Phi_{0}A_{0}\lambda^{3}r_{0}^{2}|F|^{2}}{2\mu v_{c}^{2}\sin 2\theta} \left(\frac{1+\cos^{2}2\theta}{2}\right)e^{-2M}$$

Taking the ratio of these two intensities shows that the intensity from a mosiac crystal is significantly different than from a perfect crystal

$$\frac{I_{SC}^{M}}{I_{SC}^{P}} = \left(\frac{3\pi}{16}\right) \frac{\lambda r_{0}|F|}{\mu v_{c}} \left(\frac{1+\cos^{2}2\theta}{1+|\cos 2\theta|}\right) e^{-M}$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

October 30, 2024

Comparing the integrated intensity from a perfect crystal with that which was calculated for a mosaic crystal

Perfect crystal  

$$I_{SC}^{P} = \frac{8\Phi_{0}A_{0}\lambda^{2}r_{0}|F|}{3\pi\nu_{c}\sin 2\theta} \left(\frac{1+|\cos 2\theta|}{2}\right)e^{-M} \qquad I_{SC}^{M} = \frac{\Phi_{0}A_{0}\lambda^{3}r_{0}^{2}|F|^{2}}{2\mu\nu_{c}^{2}\sin 2\theta} \left(\frac{1+\cos^{2}2\theta}{2}\right)e^{-2M}$$

Taking the ratio of these two intensities shows that the intensity from a mosiac crystal is significantly different than from a perfect crystal

$$\frac{I_{SC}^{M}}{I_{SC}^{P}} = \left(\frac{3\pi}{16}\right) \frac{\lambda r_{0}|F|}{\mu v_{c}} \left(\frac{1+\cos^{2}2\theta}{1+|\cos 2\theta|}\right) e^{-M} \propto \left(\frac{3\pi}{16}\right) \frac{\lambda r_{0}|F|}{\mu v_{c}}$$

Carlo Segre (Illinois Tech)

Comparing the integrated intensity from a perfect crystal with that which was calculated for a mosaic crystal

Perfect crystal  

$$I_{SC}^{P} = \frac{8\Phi_{0}A_{0}\lambda^{2}r_{0}|F|}{3\pi v_{c}\sin 2\theta} \left(\frac{1+|\cos 2\theta|}{2}\right)e^{-M} \qquad I_{SC}^{M} = \frac{\Phi_{0}A_{0}\lambda^{3}r_{0}^{2}|F|^{2}}{2\mu v_{c}^{2}\sin 2\theta} \left(\frac{1+\cos^{2}2\theta}{2}\right)e^{-2M}$$

Taking the ratio of these two intensities shows that the intensity from a mosiac crystal is significantly different than from a perfect crystal

$$\frac{I_{SC}^{M}}{I_{SC}^{P}} = \left(\frac{3\pi}{16}\right) \frac{\lambda r_{0}|F|}{\mu v_{c}} \left(\frac{1 + \cos^{2} 2\theta}{1 + |\cos 2\theta|}\right) e^{-M} \propto \left(\frac{3\pi}{16}\right) \frac{\lambda r_{0}|F|}{\mu v_{c}}$$

For the strong (400) reflection of GaAs this approximate ratio is  $I_{SC}^M/I_{SC}^P \approx 6$  while for the weak (200) reflection it is  $I_{SC}^M/I_{SC}^P \approx 0.2$ 

Carlo Segre (Illinois Tech)



The displacement of the Darwin curve varies inversely as the order, m, of the reflection.



The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

 $\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|r_0}{\pi m v_c}$ 





The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.







The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.



$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|r_0}{\pi m v_c}$$
$$\zeta_D = \frac{2g}{m\pi} = \frac{4d^2|F|r_0}{\pi m^2 v_c}$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.



The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.



$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|r_0}{\pi m v_c}$$
$$\zeta_D = \frac{2g}{m\pi} = \frac{4d^2|F|r_0}{\pi m^2 v_c}$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

By tuning a bit off on the "high" side we get even more suppression. This is called "detuning".



We can calculate the angular offset by noting that the offset and width have many common factors.







We can calculate the angular offset by noting that the offset and width have many common factors.







We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.







We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.





For the Si(111) at  $\lambda = 1.54056$ Å :

Carlo Segre (Illinois Tech)



We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.



For the Si(111) at  $\lambda = 1.54056$ Å :

 $\omega_D^{total}=0.0020^\circ$  ,

Carlo Segre (Illinois Tech)



We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.



Carlo Segre (Illinois Tech)



### Darwin widths



|                     | $\zeta_{\rm d}^{\rm fwhm} 	imes 10^6$ |       |       |       |       |       |       |       |       |
|---------------------|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     | (111)                                 |       |       | (220) |       |       | (400) |       |       |
| Diamond             | 61.0                                  |       |       | 20.9  |       |       | 8.5   |       |       |
| <i>a</i> = 3.5670 Å | 3.03                                  | 0.018 | -0.01 | 1.96  | 0.018 | -0.01 | 1.59  | 0.018 | -0.01 |
| Silicon             | 139.8                                 |       |       | 61.1  |       |       | 26.3  |       |       |
| <i>a</i> = 5.4309 Å | 10.54                                 | 0.25  | -0.33 | 8.72  | 0.25  | -0.33 | 7.51  | 0.25  | -0.33 |
| Germanium           | 347.2                                 |       |       | 160.0 |       |       | 68.8  |       |       |
| <i>a</i> = 5.6578 Å | 27.36                                 | -1.1  | -0.89 | 23.79 | -1.1  | -0.89 | 20.46 | -1.1  | -0.89 |

the quantities below the widths are  $f^0(Q)$ , f', and f'' (for  $\lambda = 1.5405$  Å). For an angular width, multiply times tan  $\theta$  and for  $\pi$  polarization, multiply by  $\cos(2\theta)$ .

Carlo Segre (Illinois Tech)



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0$$



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0 \qquad \qquad g = \left(\frac{2d^2r_0}{mv_c}\right)F$$



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0 \qquad g = \left(\frac{2d^2r_0}{mv_c}\right)F$$
$$F_0 = \sum_j (Z_j + f'_j + if''_j)$$



The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

$$g_{0} = \left(\frac{2d^{2}r_{0}}{mv_{c}}\right)F_{0} \qquad g = \left(\frac{2d^{2}r_{0}}{mv_{c}}\right)F$$

$$F_{0} = \sum_{j}(Z_{j} + f_{j}' + if_{j}'') \qquad F_{0} = \sum_{j}(f_{j}^{0}(\vec{Q})_{j} + f_{j}' + if_{j}'')e^{i\vec{Q}\cdot\vec{r}_{j}}$$

V

The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

the phase shift is proportional to  $g_0$  which is real, however, by adding an imaginary component, absorption can be included in the model

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0$$
$$F_0 = \sum_j (Z_j + f'_j + if''_j)$$

the variable x that parametrizes the reflectivity now is complex

$$g = \left(\frac{2d^2r_0}{mv_c}\right)F$$
  
$$F_0 = \sum_j (f_j^0(\vec{Q})_j + f_j' + if_j'')e^{i\vec{Q}\cdot\vec{r}_j}$$

V

The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

the phase shift is proportional to  $g_0$  which is real, however, by adding an imaginary component, absorption can be included in the model

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0$$
$$F_0 = \sum_j (Z_j + f'_j + if''_j)$$

$$g = \left(\frac{2d^2 r_0}{m v_c}\right) F$$
  
$$F_0 = \sum_j (f_j^0(\vec{Q})_j + f_j' + i f_j'') e^{i \vec{Q} \cdot \vec{r}_j}$$

the variable x that parametrizes the reflectivity now is complex

$$x_c = m\pi \frac{\zeta}{g} - \frac{g_0}{g}$$

V

The transmitted and scattered waves in a perfect crystal have both a phase shift and an attenuation due to absorption

the phase shift is proportional to  $g_0$  which is real, however, by adding an imaginary component, absorption can be included in the model

r

$$g_0 = \left(\frac{2d^2r_0}{mv_c}\right)F_0$$
$$F_0 = \sum_j (Z_j + f'_j + if''_j)$$

the variable x that parametrizes the reflectivity now is complex

$$x_c = m\pi \frac{\zeta}{g} - \frac{g_0}{g}$$

$$g = \left(\frac{2d^2r_0}{mv_c}\right)F$$
  
$$F_0 = \sum_j (f_j^0(\vec{Q})_j + f_j' + if_j'')e^{i\vec{Q}\cdot\vec{r}_j}$$

$$(x_c) = \begin{cases} \frac{1}{x_c + \sqrt{x_c^2 - 1}} \approx x_c - \sqrt{x_c^2 - 1} & Re\{x_c\} \ge +1\\ \frac{1}{x_c + i\sqrt{x_c^2 - 1}} \approx x_c - i\sqrt{x_c^2 - 1} & |Re\{x_c\}| \le 1\\ \frac{1}{x_c - \sqrt{x_c^2 - 1}} \approx x_c + \sqrt{x_c^2 - 1} & Re\{x_c\} \le -1 \end{cases}$$





Silicon (111) Darwin curves





Silicon (111) Darwin curves

solid line is for  $\lambda = 0.70926$  Å



Silicon (111) Darwin curves solid line is for  $\lambda = 0.70926$  Å dashed line is for  $\lambda = 1.5405$  Å





Silicon (111) Darwin curves solid line is for  $\lambda = 0.70926$  Å dashed line is for  $\lambda = 1.5405$  Å

absorption is highest at x = +1 since the standing wave field is in phase with the atomic planes
## Absorption and the Darwin curve



Silicon (111) Darwin curves solid line is for  $\lambda = 0.70926$  Å dashed line is for  $\lambda = 1.5405$  Å

absorption is highest at x = +1 since the standing wave field is in phase with the atomic planes

absorption is reduced for higher energies

## Absorption and the Darwin curve



Silicon (111) Darwin curves solid line is for  $\lambda = 0.70926$  Å dashed line is for  $\lambda = 1.5405$  Å

absorption is highest at x = +1 since the standing wave field is in phase with the atomic planes

absorption is reduced for higher energies

note that width of Darwin curve is independent of wavelength

13/16





The angular Darwin width,  $w_D$  does depend on energy

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024







The angular Darwin width,  $w_D$  does depend on energy

Carlo Segre (Illinois Tech)





The angular Darwin width,  $w_D$  does depend on energy and polarization of the beam

Carlo Segre (Illinois Tech)





When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 



Carlo Segre (Illinois Tech)





When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is





15 / 16



When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} \right], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$





15 / 16



When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} 
ight], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$

$$I(z,x) = T_0^2 \left[ e^{ik_z z} + |r|e^{i\phi}e^{-ik_z z} \right] \left[ e^{-ik_z z} + |r|e^{-i\phi}e^{+ik_z z} \right]$$





When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} \right], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$

$$T(z,x) = T_0^2 \left[ e^{ik_z z} + |r|e^{i\phi}e^{-ik_z z} \right] \left[ e^{-ik_z z} + |r|e^{-i\phi}e^{+ik_z z} \right]$$
$$= T_0^2 \left[ 1 + |r|^2 + |r|e^{i\phi}e^{-i2k_z z} + |r|e^{-i\phi}e^{i2k_z z} \right]$$



When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} \right], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$

$$I(z,x) = T_0^2 \left[ e^{ik_z z} + |r|e^{i\phi}e^{-ik_z z} \right] \left[ e^{-ik_z z} + |r|e^{-i\phi}e^{+ik_z z} \right]$$
  
=  $T_0^2 \left[ 1 + |r|^2 + |r|e^{i\phi}e^{-i2k_z z} + |r|e^{-i\phi}e^{i2k_z z} \right]$   
=  $T_0^2 \left[ 1 + |r|^2 + 2|r|\cos(\phi - Qz) \right]$ 



When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} \right], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$

$$I(z,x) = T_0^2 \left[ e^{ik_z z} + |r|e^{i\phi}e^{-ik_z z} \right] \left[ e^{-ik_z z} + |r|e^{-i\phi}e^{+ik_z z} \right]$$
  
=  $T_0^2 \left[ 1 + |r|^2 + |r|e^{i\phi}e^{-i2k_z z} + |r|e^{-i\phi}e^{i2k_z z} \right]$   
=  $T_0^2 \left[ 1 + |r|^2 + 2|r|\cos(\phi - Qz) \right]$ 

as x varies along the Darwin curve, the phase of the standing wave at a position z varies by  $\pi$ 

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

15 / 16



15/16



When the Bragg condition is met for a perfect crystal, the total wavefield above the crystal is made up of the incident and diffracted wavefields,  $T \propto e^{ik_y y} e^{ik_z z}$  and  $S \propto e^{ik_y y} e^{-ik_z z}$ 

at the crystal surface, z = 0 the amplitudes are given by  $T_0$ , and  $S_0$  and the total wavefield for z < 0 is

$$A_{tot} = T_0 e^{ik_y y} \left[ e^{ik_z z} + r e^{-ik_z z} \right], \quad r(x = \epsilon/g) = |r(x)| e^{i\phi}$$

$$I(z,x) = T_0^2 \left[ e^{ik_z z} + |r|e^{i\phi}e^{-ik_z z} \right] \left[ e^{-ik_z z} + |r|e^{-i\phi}e^{+ik_z z} \right]$$
  
=  $T_0^2 \left[ 1 + |r|^2 + |r|e^{i\phi}e^{-i2k_z z} + |r|e^{-i\phi}e^{i2k_z z} \right]$   
=  $T_0^2 \left[ 1 + |r|^2 + 2|r|\cos(\phi - Qz) \right]$ 

as x varies along the Darwin curve, the phase of the standing wave at a position z varies by  $\pi$ 

Carlo Segre (Illinois Tech)





Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve





Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons





Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons

An electron or flourescence spectrometer is used to detect the signals and determine bond distances





Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons

An electron or flourescence spectrometer is used to detect the signals and determine bond distances

This can be done most effectively by tuning the energy through the Darwin width of the rocking curve





Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons

An electron or flourescence spectrometer is used to detect the signals and determine bond distances

This can be done most effectively by tuning the energy through the Darwin width of the rocking curve

A high resolution monochromator is required for this kind of experiment