
Today’s outline - October 23, 2024

• Writing a General User Proposal

• Dynamical theory and the Darwin curve

• Extinction and absorption

• Perfect crystal integrated intensity

Reading Assignment: Chapter 6.5; Chapter 7.1

Homework Assignment #05:
Chapter 5: 1,2,7,9,10
due Monday, October 28, 2024

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Monday, November 11, 2024
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Writing a General User Proposal

1. Log into the UPS site

2. Start an APS general user proposal

3. Add an Abstract

4. Choose a beam line

5. Answer the 6 important questions

A tutorial can be found on the course home page

http://csrri.iit.edu/∼segre/phys570/24F/gu proposal.html
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Register & log into the UPS Portal
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Select the APS
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Start a proposal for and APS call
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Enter basic information and an abstract
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Register & log into the APS Portal
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Register & log into the APS Portal
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Answer the 7 important questions (2000 characters each)

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

How many visits during the proposal lifespan do you expect to need? How many shifts will you
need per visit (approximately)?

Describe/provide a list of samples.

Provide an overview of the experimental plan and procedures, including sample usage.

Describe the team’s previous experimental experience with synchrotron radiation.
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Darwin approach review

g =
1

m

2d2r0
vc

|F | = λr0d

vc sin θ
|F |

since vc ∼ d3 then g ∼ r0/d ≈ 10−5

from Chapter 3

g0 =
λρat f

0(0)r0d

sin θ
=

λ|F0|r0d
vc sin θ

where |F0| = ρat f
0(0)vc is the unit cell structure factor

in the forward direction at Q = θ = 0

this can be rewritten in terms of g as

g0 = g
|F0|
|F |

d

T S

θθ

the transmitted wave is equal in
amplitude to the incident wave
but gains a phase shift as it
passes through the layer

T ′ = (1− ig0)T ≈ e−ig0T
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Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as
the total scattering is weak, Ng ≪ 1.

Proceed by adding reflectivity from each layer with the usual phase factor

Q=mG

∆k

Q=mG(1+ζ) rN(Q) = −ig
N−1∑
j=0

e iQdje−ig0je−ig0j = −ig
N−1∑
j=0

e i(Qd−2g0)j

where the x-rays pass through each layer twice

these N unit cell layers will give a reciprocal lattice with
points at multiples of G = 2π/d we are interested in
small deviations from the Bragg condition:

ζ =
∆Q

Q
=

∆k

k
=

∆E
E

=
∆λ

λ
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Multiple layer reflection

rN(Q) = −ig
N−1∑
j=0

e i(Qd−2g0)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now becomes

Qd − 2g0 = mG (1 + ζ)
2π

G
− 2g0

= 2π(m +mζ − g0
π
)

rN(Q) = −ig
N−1∑
j=0

e i2π(m+mζ−g0/π)j

= −ig
N−1∑
j=0

e i2πmje i2π(mζ−g0/π)j

= −ig
N−1∑
j=0

1 · e i2π(mζ−g0/π)j
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Multiple layer reflection

This geometric series can be summed as usual

where

ζ0 =
g0
π

=
2d2|F0|
πmvc

r0

rN(Q) = −ig
N−1∑
j=0

e i2π(mζ−g0/π)j

|rN(ζ)| = g

[
sin(πN[mζ − ζ0])

sin(π[mζ − ζ0])

]
This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum
being at ζ = ζ0/m

As ζ → ζ0/m, the modulus of the reflectivity becomes

|rN(ζ0/m)| ≈ g
πN

π
= gN

The shift in the peak is due to refraction inside the crystal and varies as the reciprocal of the
order, 1/m

As the crystal becomes infinite (N → ∞) this kinematical approximation breaks down because
gN ∼ 1
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Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator
varies rapidly and can be replaced by its av-
erage

|rN(ζ)|2 = g2

∣∣∣∣sin(πN[mζ − ζ0])

sin(π[mζ − ζ0])

∣∣∣∣2
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N=10
7

lo
g
(I

)

Relative position ζ

|rN(ζ)|2 →
g2

2 sin2(π[mζ − ζ0])

≈ g2

2(π[mζ − ζ0])2

In the kinematical regime, away from ζ = ζ0/m
the intensity of the reflection varies as 1/ζ2

The kinematical limit clearly breaks down near
ζ0 so we need a dynamical diffraction theory
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Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the
direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a
small amount, −ig , of the wave being reflected and a phase shift, (1− ig0), being added to
the transmitted wave

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

At the Bragg condition, the wave from the j + 1th plane
must be in phase with the one from the j th plane, or
AMA′ ≡ mλ

If we restrict ourselves to a small bandwidth arount the
reflecting region, the phase is ϕ = mπ + ∆, and the
independent variable, ∆ can be related to the relative
deviation in scattering vector, ∆ = mπζ
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must be in phase with the one from the j th plane, or
AMA′ ≡ mλ

If we restrict ourselves to a small bandwidth arount the
reflecting region, the phase is ϕ = mπ + ∆, and the
independent variable, ∆ can be related to the relative
deviation in scattering vector, ∆ = mπζ
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Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1 and at point A′ it is
Sj+1e

iϕ

but this must be equal to the field Sj just after passing up through the j th layer which applies
a phase shift plus the small part of the Tj field reflected from the top of the j th layer

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

similarly we can write an equation for Tj+1 just below
the j th plane

Sj =

− igTj+1 +

(1− ig0)Sj+1e
iϕ

(1− ig0)Tj = Tj+1e
−iϕ + igSj+1e

iϕ

these coupled equations must be solved for an infinite
stack of atomic layers
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Separation of T & S fields

Sj = −igTj+1 + (1− ig0)Sj+1e
iϕ, (1− ig0)Tj = Tj+1e

−iϕ + igSj+1e
iϕ

Rearranging the equation for Tj (top right)

shifting up by one plane: j + 1 → j and
j → j − 1

igSj+1 = (1− ig0)Tje
−iϕ − Tj+1e

−i2ϕ

igSj = (1− ig0)Tj−1e
−iϕ − Tje

−i2ϕ

now substitute into the equation for Sj above

(1− ig0)Tj−1e
−iϕ − Tje

−i2ϕ = g2Tj + (1− ig0)
[
(1− ig0)Tj − Tj+1e

−iϕ
]

(1− ig0)e
−iϕ [Tj+1 + Tj−1] =

[
g2 + (1− ig0)

2 + e−i2ϕ
]
Tj

the fields Tj and Tj+1 are out of phase by nearly mπ (top right equation) since g and g0 are
very small and the T wave field must attenuate as it penetrates deeper into the crystal so our
trial solution is

Tj+1 = e−ηe imπTj
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Solving for the T field

(1− ig0)e
−iϕ [Tj+1 + Tj−1] =

[
g2 + (1− ig0)

2 + e−i2ϕ
]
Tj

With the trial solution Tj+1 = e−ηe imπTj

,

Tj−1 = eηe−imπTj

and substituting this solution into the defining equation for T and noting that ϕ ≡ mπ +∆

(1− ig0)e
−iϕ

[
e−ηe imπTj + eηe−imπTj

]
=

[
g2 + (1− ig0)

2 + e−i2ϕ
]
Tj

(1− ig0)�
��

e−imπe−i∆
[
e−η

�
��e imπ + eη���

e−imπ
]
= g2 + (1− ig0)

2 +����
e−i2mπe−i2∆

(1− ig0)e
−i∆

[
e−η + eη

]
= g2 + (1− ig0)

2 + e−i2∆

assuming that g , g0, and ∆ are very small quantities, we can expand

(1− ig0)(1− i∆− ∆2

2
)

[
(1− η +

η2

2
) + (1 + η +

η2

2
)

]
≈ g2 + (1− 2ig0 − g2

0 ) + (1− i2∆− 2∆2)
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2
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Cancelling and expanding all products keeping only second order terms

(1− ig0 − i∆− g0∆− ∆2

2
)(2 + η2) ≈ g2 + 2− 2ig0 − 2i∆− g2

0 − 2∆2

�2−���2ig0 −���2i∆− 2g0∆−∆2 + η2 ≈ g2 + �2−���2ig0 −�
��2i∆− g2

0 − 2∆2

η2 ≈ g2 − g2
0 + 2g0∆−∆2 = g2 − (∆− g0)

2

The solution for the attenuation factor of the transmitted field is thus

iη = ±
√
(∆− g0)− g2

with fields

Tj+1 = e−ηe imπTj , Sj+1 = e−ηe imπSj
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