

• Writing a General User Proposal

- Writing a General User Proposal
- Dynamical theory and the Darwin curve

- Writing a General User Proposal
- Dynamical theory and the Darwin curve
- Extinction and absorption

- Writing a General User Proposal
- Dynamical theory and the Darwin curve
- Extinction and absorption
- Perfect crystal integrated intensity

- Writing a General User Proposal
- Dynamical theory and the Darwin curve
- Extinction and absorption
- Perfect crystal integrated intensity

Reading Assignment: Chapter 6.5; Chapter 7.1

1/31

- Writing a General User Proposal
- Dynamical theory and the Darwin curve
- Extinction and absorption
- Perfect crystal integrated intensity

Reading Assignment: Chapter 6.5; Chapter 7.1

Homework Assignment #05: Chapter 5: 1,2,7,9,10 due Monday, October 28, 2024

- Writing a General User Proposal
- Dynamical theory and the Darwin curve
- Extinction and absorption
- Perfect crystal integrated intensity

Reading Assignment: Chapter 6.5; Chapter 7.1

Homework Assignment #05: Chapter 5: 1,2,7,9,10 due Monday, October 28, 2024 Homework Assignment #06: Chapter 6: 1,6,7,8,9 due Monday, November 11, 2024 Writing a General User Proposal

- 1. Log into the UPS site
- 2. Start an APS general user proposal
- 3. Add an Abstract
- 4. Choose a beam line
- 5. Answer the 6 important questions

A tutorial can be found on the course home page

 $http://csrri.iit.edu/{\sim}segre/phys570/24F/gu_proposal.html$

Carlo Segre (Illinois Tech)

World class

- State-of-the-art synchrotron radiation light sources at APS and NSLS-II offer continuous spectrum, high flux and brightness allowing scientists to probe the fundamental properties of matter.
- The free electron laser at LCLS generates ultra-bright, ultrafast, high coherence pulses, with the MeV-UED offering a powerful "electron camera" to study ultrafast atomic & molecular dynamics.

Learn more

- User facilities provide open access to specialized instrumentation to scientists from universities, national laboratories, and industry.
- For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open ilkerature.
- Thousands of scientists conduct experiments at BES user facilities every year.

Get started

- Create a free ORCID profile or use your existing ORCID ID to register to use the proposal system.
- Submit a proposal to request experimental time or submit a request against a proposal that has already been awarded time.
- Contact User Program staff with any questions they are there to help!

U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE X-RAY LIGHT SOURCES

Participating Facilities

This tool is currently being used to support the proposal submission and review processes for the following facilities

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

October 23, 2024

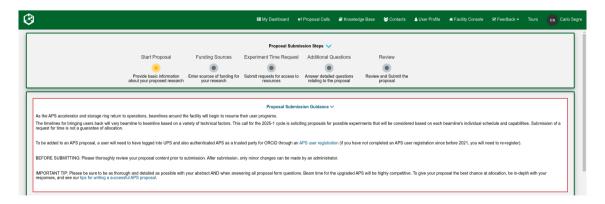
Select the APS

	Carlo Segre Email segre@it.edu			User A	sknowledgement					
Ű	Errefory Institution Hinois Institute of Techn	ology								
MY PROPOSALS										
SLAC @L Linac Coherent Source		Argonne 🛆 Advanced Photon Source	e Brackhan National Synchrotre Source II	n Light	Brookhaven Historie Laboratory Laboratory for oMolecular Structure	Megaelectro	C Hilling nyolt Ultrafast Diffraction			
Draft 0 An Active 0	chive 0 Draft 0 Archive 0 Active 0	Draft 1 Archive Active 4	0 Draft 0 Arc	hive 0 D	raft 0 Archive 0 Active 0	Draft 0 Act	Archive 0 live 0			
And	Active 0	Draft 1 Archive Active 4	Oraft 0 Arc Active 0	D	Active 0	Act	ave 0			
Active 0 Advanced Phot Feature Be	Active 0	Active 4	Draft @ Arc Active @		Active 0	Act	Sive 0			
Active 0 Advanced Phot Feature Be	Active 0 con Source pamlines Contact Ir	Active 4	Active 0	Subwitted 1	Ancheve 0 Ancheve 0	Lovent G Act	ove 0	ared Stylin A	Used A	Vew Experim Time Report
Active 0 Advanced Phot Feature Be Active 0 Number A	Active 0 toon Source annihos Contact in Craft Archived	Active 4	Beamlines		Active 0	Act	ove 0	and SNRs A	Used 1	View Esperitor Trave Response
Active 0 Advanced Phot Feature Be Active 0 Number A 1006727 1006933	Andree D con Source con Source Contact In Train Marchived Train Marchived as addeduce to the	Active 4	Beamlines	Submitted A	Active 0 States Active 0 I2 Proposal Active	Act	ove 0	cred Shifts a	Used a	Time Reques
Active 0 Advanced Phot Feature Be Active D Number A 1006727 1006933 1090228	Answe 2 on Source annines Contact In The Answer 3 The Ans	fo Type + CAT Member Zr K- CAT Member Zr K- CAT Member	Active 6 Beamlines Priscipal Investigator 4 Carlo Segre	Subwritted A 10/01/2024 12:24:	Active 0 Status A 12 Proposal Active 11 Proposal Active	Act	ove 0	ored Bioline A	Used 1	Time Reques
Active 0 Advanced Phot Feature Be Active 0 Number A 1006727 1006933 1059226 1006296	Answe 2 on Source annihies Contact Is but Arabived The - Therefore have the Provide the Answer of the Answer of the Answer of the Answer of	Active 4 fo CAT Member 27.5C CAT Member 27.5C CAT Member 700	Beamlines Priscipal Investigator 1 Carlo Begre Benard Petzwoh	Subvetted 1 1001/2024 12 24: 10/04/2024 23:15-	Active 0 Elater A 12 Proposal Active 11 Proposal Active 22 Submitted in Rev	Action Second	ove 0	and brits .	Used A	Time Reques

Carlo Segre (Illinois Tech)

Start a proposal for and APS call

			Advanced Pho	con oource		
F	eature Beamlines	Contact Info	Beamlines			
and Da	Title 🔺		Types 🔺	Proposal Cycles 🔺	Deadline 🔺	Proposal Call Status
24	2025-1 eBERlight Ma Crystallography	acromolecular	General User - Macromolecular Crystallography	APS: 2025-1	10/25/2024 21:59:59	SUBMIT A PROPOSA
	2025-1 Partner User	Proposals (PUP)	Partner Proposals	APS: 2025-1	10/25/2024 21:59:59	SUBMIT A PROPOSA
s.anl.gov/	2025-1 eBERlight Ge	eneral User	General User - Regular	APS: 2025-1	10/25/2024 21:59:59	SUBMIT A PROPOSA
	2025-1 Standard Ge Proposals	neral User	General User - Regular	APS: 2025-1	10/25/2024 21:59:59	SUBMIT A PROPOSA
	2025-1 Macromolecu Proposals	ular Crystallography	General User - Macromolecular Crystallography	APS: 2025-1	10/25/2024 21:59:59	SUBMIT A PROPOSA
	2024-3 Standard Ge Access Proposals	neral User - Rapid	General User - Rapid Access	APS: 2024-3	12/18/2024 21:59:59	SUBMIT A PROPOSA
	2024-3 CAT Member	r Proposals	CAT Member	APS: 2025-1, APS: 2024-3	12/18/2024 21:59:59	SUBMIT A PROPOSA
	2024-3 Resource Sta (Includes CAT and A	aff Proposals PS Staff)	Resource Staff	APS: 2025-1, APS: 2024-3	12/18/2024 21:59:59	SUBMIT A PROPOSA
	2024-3 Macromolecu Proposals	ular Crystallography	General User - Macromolecular Crystallography	APS: 2025-1, APS: 2024-3	12/18/2024 21:59:59	SUBMIT A PROPOSA
	2025-1 Resource Sta (Includes CAT and A	aff Proposals PS Staff)	Resource Staff	APS: 2025-1	04/17/2025 21:59:59	SUBMIT A PROPOSA
	2025-1 CAT Member	r Proposals	CAT Member	APS: 2025-1	04/17/2025 21:59:59	SUBMIT A PROPOSA


Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

October 23, 2024

Enter basic information and an abstract

Enter basic information and an abstract

۶	III My Dashboard	¶⊄ Proposal Calls	Knowledge Base	🔮 Contacts	≜ User Profile	# Facility Console	Geedback -	Tours	Carlo Seg
≡ 1009536				-16	o attach supportir	ag documentation with	n this proposal, us	e Paperclip I	icon. <i>M</i>
Proposal *Proposal Title									
PHYS 570 Experiments		Argonne							
Proposal Call		Principal Inves Carlo Se							x v
2025-1 Standard General User Proposals Proposal Type	Ÿ	Co-Principal Inv	estigator (PI)						
General User - Regular	¥	Co-proposers							
Primary Area of Research Materials science									
Additional Area(s) of Research									
* Keywords									
× x-ray absorption spectroscopy (XAS)									
PTease suggest the most appropriate review panel for your proposal. Spectroscopy-Chem/Catalysis	н т								
Abstract *Abstract									
This is the dummy experiment for PHYS 570									
1959 characters remaining of 2000 characters									
							1	SAVE (CTR	:L + S)

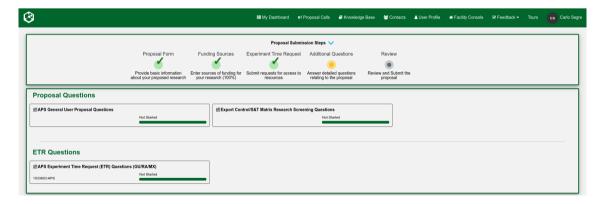
Enter basic information and an abstract

3			III My Dashboard	f Proposal Calls	Knowledge Base	🖶 Contacts	🛔 User Profile	# Facility Console	☞ Feedback -	Tours	Carlo Segre
Г			Proposal Sub	omission Steps 🧡							
		Proposal Form Funding Sources Ex	operiment Time Reque	st Additional G	uestions	Review					
		Provide basic information about your proposed research your research (100%)	bmit requests for access resources	to Answer detaile relating to the	questions Rev proposal	lew and Submit the proposal					
F											_
			g information is requi	red for facility rep							
	Funding Source	Details			Grant			Percentage			
	Other	Duchossois Leadership Program			N/A			100%		E	DIT
								Total: 100%			
			• ADD F	UNDING SOURCE							
					,						

V

Register & log into the APS Portal

Experiment Time Request * Proposal			
0 1009536	ж	•	Argonne
*Run Cycle			ETR Number
0 APS: 2025-1	ж	*	1033603
1st Choice Resource			2nd Choice Resource
0 10-ID-B	×	*	· · · · · · · · · · · · · · · · · · ·
1st Choice Instrument			2nd Choice Instrument
0 10-ID-B X-ray absorption fine structure	×	*	
1st Choice Technique			2nd Choice Technique
X-ray absorption spectroscopy (XAS)	×	•	
Shifts Requested This ETR			
8			
Minimum Useful Shifts This ETR			
8			
*Lifetime Shifts Requested			
24			

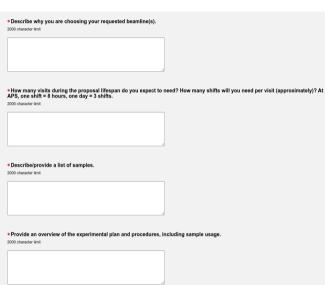

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

1009536 APS General User Proposal Questions
General
•What mode(s) of access would you consider for this work? (Note: not all beamlines support all modes of access, choose all th apply.)
Remote
Mail-in
On-site
* Will the data collected be considered proprietary (e.g., work that will not be made available in the open literature)?
○ yes
O no
*Have you spoken to a beamline staff member?
O yes
O no
*Is this research required for a student's thesis?
O yes
O no
Is this proposal related to another proposal?
○ yes
O no

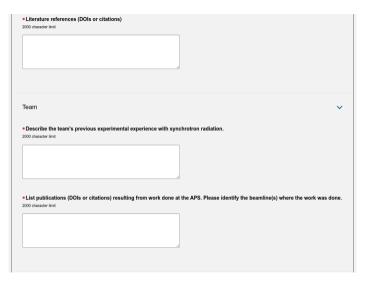
Carlo Segre (Illinois Tech)

 \sim



Did you previously receive experiment time at APS for this research.	arch?
⊖ yes	
O no	
• Will you be requesting beam time at APS sector 35, the Dynami	c Compression Sector (DCS)?
⊖ yes	
O no	
Technical	~
lecinical	•
• What is the scientific or technical purpose and importance of th	e proposed research?
*What is the scientific or technical purpose and importance of th 2000 character limit	e proposed research?
	e proposed research?
2000 character limit	e proposed research?
2000 character limit • Why do you need the APS for this research?	e proposed research?
2000 character limit	e proposed research?
2000 character limit • Why do you need the APS for this research?	e proposed research?
2000 character limit • Why do you need the APS for this research?	e proposed research?
2000 character limit • Why do you need the APS for this research?	e proposed research?

Carlo Segre (Illinois Tech)


PHYS 570 - Fall 2024

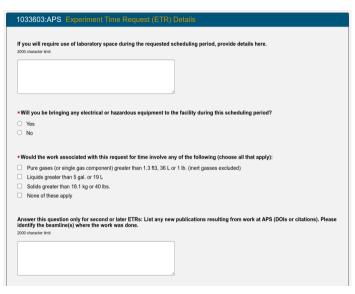
October 23, 2024

Carlo Segre (Illinois Tech)

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

Safe	ty	~
*Doe	es this research involve the use of radioactive samples/materials, sealed sources, or x-ray generating devices?	
⊖ y	es	
0 n	0	
*Doe	es this research involve the use of any of the following (pick all that apply):	
. e	xplosives or energetic materials	
a	new class 3 or class 4 laser that has not been approved by the Argonne Laser Safety Officer	
🗆 n	anoparticles (one or more dimensions is 100 nm or less), including thin films, powder, and solutions	
S	amples/materials that require a BSL-2 (biosafety level) facility	
🗆 h	uman subjects or human tissues, body fluids, or cells in culture	
🗆 р	lant pathogens, soil microbes, animals, insects, or insect/animal tissues, body fluids, matter, cells in culture	
🗆 n	ione	
CAN	NCEL	SAVE

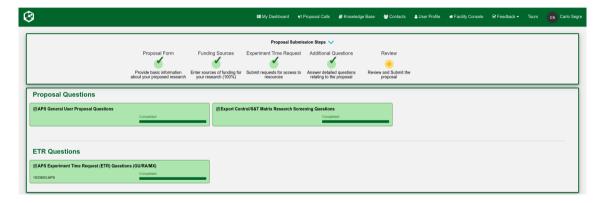

Carlo Segre (Illinois Tech)

	matio
×	
cimens/samples), technical data, software, or services owned or funded by a nucl , or a defense contractor of the United States or of another country?	lear,
*	
•	
eactors, nuclear grade graphite, uranium enrichment)?	cial
*	
imens/samples), technical data, or software to the user facility that require restri	cted
*	
al and emerging research areas and technologies. Note: If no or unsure, you sho nsible for screening research for the DOE S&T Risk Matrix. The User Facility mus	uld
ec pl ico	ecimensisamples), technical data, software, or services owned or funded by a nuc y, or a definite contraction of the United States or of another country? aducted at the user facility, are any items, technical data, software or services desi tary applications, military training, spacecarth, isunch vehicles, or national security afuel of or or would the research involve- a nuclear reactor application (e.g., commer reactors, nuclear grade graphics, uranium enrichment)? * ecimensisamples), technical data, or software to the user facility that require restri

V

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024



V

Preferred experiment dates	for this request, enter date span(s) in format MM/DD/YYYY.	
Unacceptable experiment da	ites for this request, enter date span(s) in format MM/DD/YYYY.	
CANCEL		SAVE

What is the scientific or technical purpose and importance of the proposed research?

A.F

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

How many visits during the proposal lifespan do you expect to need? How many shifts will you need per visit (approximately)?

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

How many visits during the proposal lifespan do you expect to need? How many shifts will you need per visit (approximately)?

Describe/provide a list of samples.

What is the scientific or technical purpose and importance of the proposed research?

Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

How many visits during the proposal lifespan do you expect to need? How many shifts will you need per visit (approximately)?

Describe/provide a list of samples.

Provide an overview of the experimental plan and procedures, including sample usage.

What is the scientific or technical purpose and importance of the proposed research?

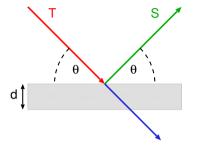
Why do you need the APS for this research?

Describe why you are choosing your requested beamline(s).

How many visits during the proposal lifespan do you expect to need? How many shifts will you need per visit (approximately)?

Describe/provide a list of samples.

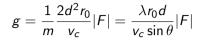
Provide an overview of the experimental plan and procedures, including sample usage.


Describe the team's previous experimental experience with synchrotron radiation.

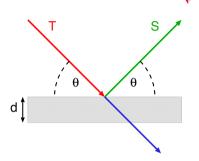
Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

Darwin approach review

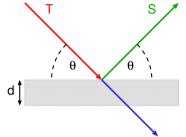

$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

Carlo Segre (Illinois Tech)


PHYS 570 - Fall 2024

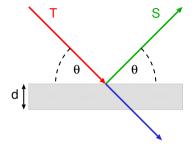
October 23, 2024

Darwin approach review


since $v_c \sim d^3$ then $g \sim r_0/d pprox 10^{-5}$

$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

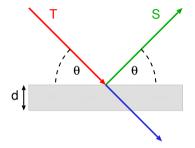
since $v_c \sim d^3$ then $g \sim r_0/d pprox 10^{-5}$



$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

since $v_c \sim d^3$ then $g \sim r_0/d pprox 10^{-5}$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer


$$T' = (1 - ig_0)T$$

PHYS 570 - Fall 2024

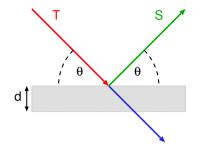
$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

since $v_c \sim d^3$ then $g \sim r_0/d pprox 10^{-5}$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

 $T' = (1 - ig_0)T pprox e^{-ig_0}T$

PHYS 570 - Fall 2024

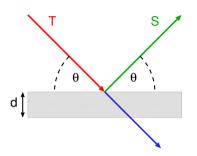

$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

since $v_c \sim d^3$ then $g \sim r_0/d \approx 10^{-5}$

from Chapter 3

$$g_0 = \frac{\lambda \rho_{at} f^0(0) r_0 d}{\sin \theta}$$

$$T' = (1 - ig_0)T pprox e^{-ig_0}T$$


$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

since $v_c \sim d^3$ then $g \sim r_0/d \approx 10^{-5}$

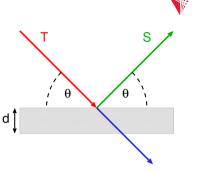
from Chapter 3

$$g_0 = \frac{\lambda \rho_{at} f^0(0) r_0 d}{\sin \theta} = \frac{\lambda |F_0| r_0 d}{v_c \sin \theta}$$

where $|F_0| = \rho_{at} f^0(0) v_c$ is the unit cell structure factor in the forward direction at $Q = \theta = 0$

$$T' = (1 - ig_0)T pprox e^{-ig_0}T$$

$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$


since $v_c \sim d^3$ then $g \sim r_0/d \approx 10^{-5}$

from Chapter 3

$$g_0 = \frac{\lambda \rho_{at} f^0(0) r_0 d}{\sin \theta} = \frac{\lambda |F_0| r_0 d}{v_c \sin \theta}$$

where $|F_0| = \rho_{at} f^0(0) v_c$ is the unit cell structure factor in the forward direction at $Q = \theta = 0$

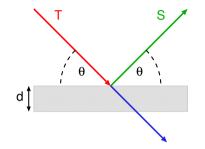
this can be rewritten in terms of g as

$$T' = (1 - ig_0)T pprox e^{-ig_0}T$$

$$g = \frac{1}{m} \frac{2d^2 r_0}{v_c} |F| = \frac{\lambda r_0 d}{v_c \sin \theta} |F|$$

since $v_c \sim d^3$ then $g \sim r_0/d \approx 10^{-5}$

from Chapter 3


$$g_0 = \frac{\lambda \rho_{at} f^0(0) r_0 d}{\sin \theta} = \frac{\lambda |F_0| r_0 d}{v_c \sin \theta}$$

where $|F_0| = \rho_{at} f^0(0) v_c$ is the unit cell structure factor in the forward direction at $Q = \theta = 0$

this can be rewritten in terms of g as

$$g_0 = g \frac{|F_0|}{|F|}$$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$T' = (1 - ig_0)T pprox e^{-ig_0}T$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$r_{N}(Q) = -ig\sum_{j=0}^{N-1}e^{iQdj}e^{-ig_{0}j}e^{-ig_{0}j}$$

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$r_{N}(Q) = -ig\sum_{j=0}^{N-1}e^{iQdj}e^{-ig_{0}j}e^{-ig_{0}j}$$

where the x-rays pass through each layer twice

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

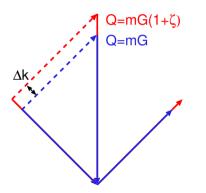
$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{iQdj} e^{-ig_0j} e^{-ig_0j} = -ig \sum_{j=0}^{N-1} e^{i(Qd-2g_0)j}$$

where the x-rays pass through each layer twice

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{iQdj} e^{-ig_0j} e^{-ig_0j} = -ig \sum_{j=0}^{N-1} e^{i(Qd-2g_0)j}$$


where the x-rays pass through each layer twice

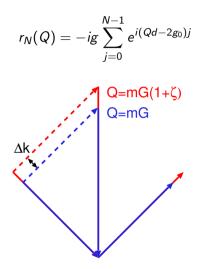
these N unit cell layers will give a reciprocal lattice with points at multiples of $G=2\pi/d$

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $Ng \ll 1$.

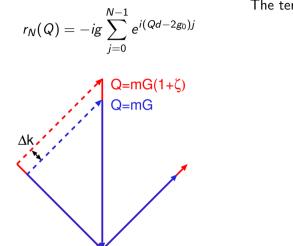
Proceed by adding reflectivity from each layer with the usual phase factor

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{iQdj} e^{-ig_0j} e^{-ig_0j} = -ig \sum_{j=0}^{N-1} e^{i(Qd-2g_0)j}$$

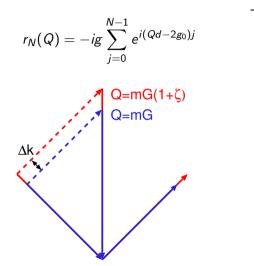
where the x-rays pass through each layer twice


these *N* unit cell layers will give a reciprocal lattice with points at multiples of $G = 2\pi/d$ we are interested in small deviations from the Bragg condition:

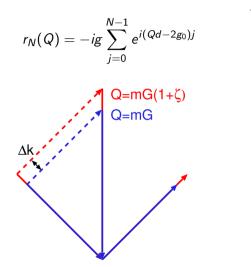
$$\zeta = \frac{\Delta Q}{Q} = \frac{\Delta k}{k} = \frac{\Delta \mathcal{E}}{\mathcal{E}} = \frac{\Delta \lambda}{\lambda}$$


PHYS 570 - Fall 2024

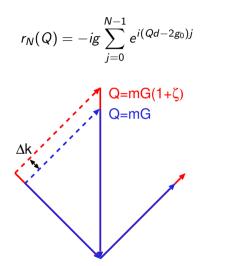
l



The term in the phase factor now becomes

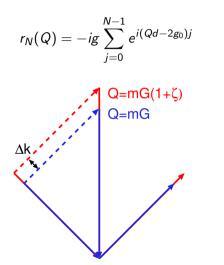

 $Qd - 2g_0$

$$Qd-2g_0=mG(1+\zeta)\frac{2\pi}{G}-2g_0$$

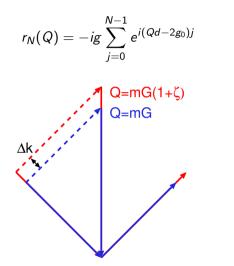

The term in the phase factor now becomes

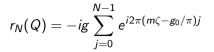
$$egin{aligned} \mathcal{Q}d-2g_0&=mG(1+\zeta)rac{2\pi}{G}-2g_0\ &=2\pi(m+m\zeta-rac{g_0}{\pi}) \end{aligned}$$

(



24/31


$$egin{aligned} Qd - 2g_0 &= mG(1+\zeta)rac{2\pi}{G} - 2g_0 \ &= 2\pi(m+m\zeta-rac{g_0}{\pi}) \ r_N(Q) &= -ig\sum_{j=0}^{N-1}e^{i2\pi(m+m\zeta-g_0/\pi)j} \end{aligned}$$


$$egin{aligned} Qd - 2g_0 &= mG(1+\zeta)rac{2\pi}{G} - 2g_0 \ &= 2\pi(m+m\zeta-rac{g_0}{\pi}) \ r_N(Q) &= -ig\sum_{j=0}^{N-1}e^{i2\pi(m+m\zeta-g_0/\pi)j} \ &= -ig\sum_{j=0}^{N-1}e^{i2\pi mj}e^{i2\pi(m\zeta-g_0/\pi)j} \end{aligned}$$

$$Qd - 2g_0 = mG(1 + \zeta)\frac{2\pi}{G} - 2g_0$$

= $2\pi(m + m\zeta - \frac{g_0}{\pi})$
 $r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m + m\zeta - g_0/\pi)j}$
= $-ig \sum_{j=0}^{N-1} e^{i2\pi mj} e^{i2\pi(m\zeta - g_0/\pi)j}$
= $-ig \sum_{j=0}^{N-1} 1 \cdot e^{i2\pi(m\zeta - g_0/\pi)j}$

This geometric series can be summed as usual

This geometric series can be summed as usual

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

As $\zeta
ightarrow \zeta_0/m$, the modulus of the reflectivity becomes

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

As $\zeta
ightarrow \zeta_0/m$, the modulus of the reflectivity becomes

$$|r_N(\zeta_0/m)| \approx g \frac{\pi N}{\pi}$$

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

25 / 31

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

As $\zeta \to \zeta_0/\textit{m},$ the modulus of the reflectivity becomes

$$|r_N(\zeta_0/m)| \approx g \frac{\pi N}{\pi} = g N$$

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

As $\zeta \to \zeta_0/\textit{m},$ the modulus of the reflectivity becomes

$$|r_N(\zeta_0/m)| \approx g \frac{\pi N}{\pi} = g N$$

The shift in the peak is due to refraction inside the crystal and varies as the reciprocal of the order, 1/m

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

This geometric series can be summed as usual

where

$$\zeta_0 = \frac{g_0}{\pi} = \frac{2d^2|F_0|}{\pi m v_c} r_0$$

$$r_N(Q) = -ig \sum_{j=0}^{N-1} e^{i2\pi(m\zeta - g_0/\pi)j}$$
$$|r_N(\zeta)| = g \left[\frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right]$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta = \zeta_0/m$

As $\zeta \to \zeta_0/\textit{m},$ the modulus of the reflectivity becomes

$$|r_N(\zeta_0/m)| \approx g \frac{\pi N}{\pi} = g N$$

The shift in the peak is due to refraction inside the crystal and varies as the reciprocal of the order, 1/m

As the crystal becomes infinite ($N \to \infty)$ this kinematical approximation breaks down because $gN \sim 1$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

Diffraction in the kinematical limit

V

It is useful to look at how the intensity of the reflection varies in the kinematical limit

Diffraction in the kinematical limit

V

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$

V

~

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$

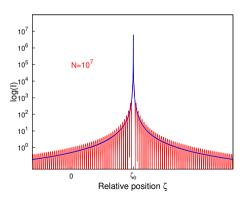
$$|r_N(\zeta)|^2 \rightarrow \frac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])}$$

V

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$


$$|r_N(\zeta)|^2
ightarrow rac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])} \ pprox rac{g^2}{2(\pi[m\zeta-\zeta_0])^2}$$

V

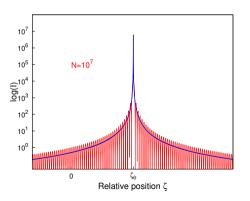
~

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right|^2$$

$$|r_N(\zeta)|^2
ightarrow rac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])} \ pprox rac{g^2}{2(\pi[m\zeta-\zeta_0])^2}$$


V

26/31

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

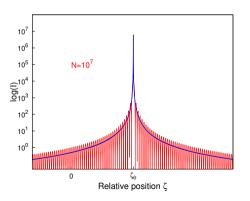
As N becomes very large the numerator varies rapidly and can be replaced by its average

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$

$$|r_N(\zeta)|^2
ightarrow rac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])} \ pprox rac{g^2}{2(\pi[m\zeta-\zeta_0])^2}$$

In the kinematical regime, away from $\zeta=\zeta_0/m$ the intensity of the reflection varies as $1/\zeta^2$

Carlo Segre (Illinois Tech)


V

26/31

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

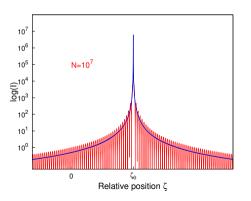
As N becomes very large the numerator varies rapidly and can be replaced by its average

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi [m\zeta - \zeta_0])} \right|^2$$

$$|r_N(\zeta)|^2
ightarrow rac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])} \ pprox rac{g^2}{2(\pi[m\zeta-\zeta_0])^2}$$

In the kinematical regime, away from $\zeta=\zeta_0/m$ the intensity of the reflection varies as $1/\zeta^2$

Carlo Segre (Illinois Tech)


V

26/31

Diffraction in the kinematical limit

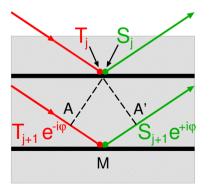
It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$|r_N(\zeta)|^2 = g^2 \left| \frac{\sin(\pi N[m\zeta - \zeta_0])}{\sin(\pi[m\zeta - \zeta_0])} \right|^2$$

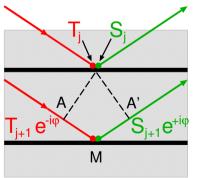
$$|r_N(\zeta)|^2
ightarrow rac{g^2}{2\sin^2(\pi[m\zeta-\zeta_0])} \ pprox rac{g^2}{2(\pi[m\zeta-\zeta_0])^2}$$

In the kinematical regime, away from $\zeta=\zeta_0/m$ the intensity of the reflection varies as $1/\zeta^2$

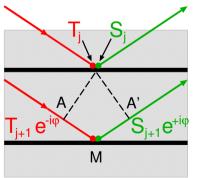

The kinematical limit clearly breaks down near ζ_0 so we need a dynamical diffraction theory

PHYS 570 - Fall 2024

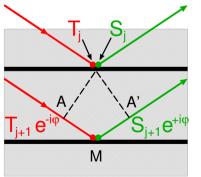
Carlo Segre (Illinois Tech)


In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave


As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave

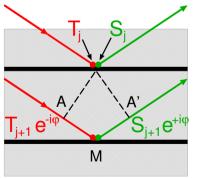
In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave


As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave

V

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

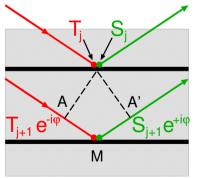
As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave



At the Bragg condition, the wave from the $j + 1^{th}$ plane must be in phase with the one from the j^{th} plane, or

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave



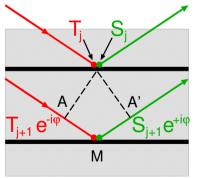
At the Bragg condition, the wave from the $j + 1^{th}$ plane must be in phase with the one from the j^{th} plane, or $AMA' \equiv m\lambda$

V

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave

At the Bragg condition, the wave from the $j + 1^{th}$ plane must be in phase with the one from the j^{th} plane, or $AMA' \equiv m\lambda$

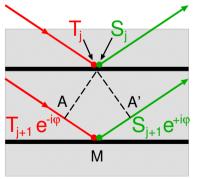

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is

V

27/31

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave


At the Bragg condition, the wave from the $j + 1^{th}$ plane must be in phase with the one from the j^{th} plane, or $AMA' \equiv m\lambda$

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is $\phi = m\pi + \Delta$,

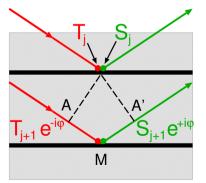
V

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $(1 - ig_0)$, being added to the transmitted wave

At the Bragg condition, the wave from the $j + 1^{th}$ plane must be in phase with the one from the j^{th} plane, or $AMA' \equiv m\lambda$

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is $\phi = m\pi + \Delta$, and the independent variable, Δ can be related to the relative deviation in scattering vector, $\Delta = m\pi\zeta$

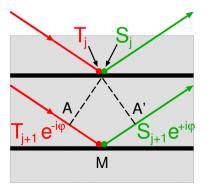

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

October 23, 2024

27 / 31

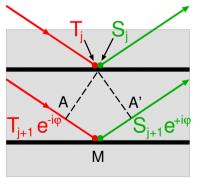
Let T_j and S_j be the fields just above layer j.



V

Let T_j and S_j be the fields just above layer j.

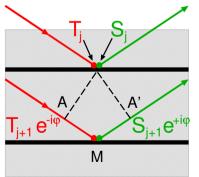
at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$



Let T_j and S_j be the fields just above layer j.

at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$

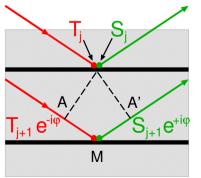
but this must be equal to the field S_j just after passing up through the j^{th} layer which applies a phase shift


 $S_j= (1-ig_0)S_{j+1}e^{i\phi}$

Let T_j and S_j be the fields just above layer j.

at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$

but this must be equal to the field S_j just after passing up through the j^{th} layer which applies a phase shift plus the small part of the T_j field reflected from the top of the j^{th} layer


$$S_j = -ig T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}$$

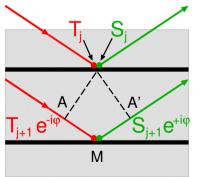
Let T_j and S_j be the fields just above layer j.

at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$

but this must be equal to the field S_j just after passing up through the j^{th} layer which applies a phase shift plus the small part of the T_j field reflected from the top of the j^{th} layer

similarly we can write an equation for T_{j+1} just below the j^{th} plane

$$S_j = -ig \, T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}$$



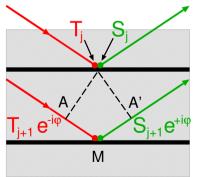
28/31

Let T_j and S_j be the fields just above layer j.

at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$

but this must be equal to the field S_j just after passing up through the j^{th} layer which applies a phase shift plus the small part of the T_j field reflected from the top of the j^{th} layer

similarly we can write an equation for T_{j+1} just below the j^{th} plane


$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}$$
$$(1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Let T_j and S_j be the fields just above layer j.

at point M, just above the $j + 1^{th}$ layer, we have the scattered field S_{j+1} and at point A' it is $S_{j+1}e^{i\phi}$

but this must be equal to the field S_j just after passing up through the j^{th} layer which applies a phase shift plus the small part of the T_j field reflected from the top of the j^{th} layer

similarly we can write an equation for T_{j+1} just below the j^{th} plane

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}$$
$$(1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

these coupled equations must be solved for an infinite stack of atomic layers

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

$$S_j = -ig T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}, \quad (1 - ig_0) T_j = T_{j+1} e^{-i\phi} + ig S_{j+1} e^{i\phi}$$

$$S_j = -ig T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}, \quad (1 - ig_0) T_j = T_{j+1} e^{-i\phi} + ig S_{j+1} e^{i\phi}$$

Rearranging the equation for T_i (top right)

$$S_j = -ig T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}, \quad (1 - ig_0) T_j = T_{j+1} e^{-i\phi} + ig S_{j+1} e^{i\phi}$$

Rearranging the equation for T_i (top right)

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_i (top right)

shifting up by one plane: j+1
ightarrow j and j
ightarrow j-1

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_j (top right)

shifting up by one plane: j+1
ightarrow j and j
ightarrow j-1

$$ig S_{j+1} = (1 - ig_0) T_j e^{-i\phi} - T_{j+1} e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

29/31

$$S_j = -ig T_{j+1} + (1 - ig_0) S_{j+1} e^{i\phi}, \quad (1 - ig_0) T_j = T_{j+1}$$

Rearranging the equation for T_j (top right) shifting up by one plane: $j + 1 \rightarrow j$ and $j \rightarrow j - 1$

now substitute into the equation for S_i above

$$igS_{j+1} = (1 - ig_0)T_j e^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

 $-i\phi$ $i\pi c$ $i\phi$

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_j (top right) shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

now substitute into the equation for S_j above

$$(1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi} = g^2T_j + (1 - ig_0)\left[(1 - ig_0)T_j - T_{j+1}e^{-i\phi}\right]$$

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_j (top right) shifting up by one plane: $j + 1 \rightarrow j$ and $j \rightarrow j - 1$

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

now substitute into the equation for S_j above

$$(1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi} = g^2T_j + (1 - ig_0)\left[(1 - ig_0)T_j - T_{j+1}e^{-i\phi}\right]$$
$$(1 - ig_0)e^{-i\phi}[T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_j (top right) shifting up by one plane: $j + 1 \rightarrow j$ and $j \rightarrow j - 1$

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

now substitute into the equation for S_i above

$$(1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi} = g^2T_j + (1 - ig_0)\left[(1 - ig_0)T_j - T_{j+1}e^{-i\phi}\right]$$
$$(1 - ig_0)e^{-i\phi}[T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

the fields T_j and T_{j+1} are out of phase by nearly $m\pi$ (top right equation) since g and g_0 are very small and the T wave field must attenuate as it penetrates deeper into the crystal so our trial solution is

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

$$S_{j} = -ig T_{j+1} + (1 - ig_{0})S_{j+1}e^{i\phi}, \quad (1 - ig_{0})T_{j} = T_{j+1}e^{-i\phi} + ig S_{j+1}e^{i\phi}$$

Rearranging the equation for T_j (top right) shifting up by one plane: $j + 1 \rightarrow j$ and $j \rightarrow j - 1$

$$igS_{j+1} = (1 - ig_0)T_je^{-i\phi} - T_{j+1}e^{-i2\phi}$$

$$igS_j = (1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi}$$

now substitute into the equation for S_j above

$$(1 - ig_0)T_{j-1}e^{-i\phi} - T_je^{-i2\phi} = g^2T_j + (1 - ig_0)\left[(1 - ig_0)T_j - T_{j+1}e^{-i\phi}\right]$$
$$(1 - ig_0)e^{-i\phi}[T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

the fields T_j and T_{j+1} are out of phase by nearly $m\pi$ (top right equation) since g and g_0 are very small and the T wave field must attenuate as it penetrates deeper into the crystal so our trial solution is

$$T_{j+1} = e^{-\eta} e^{im\pi} T_j$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2024

$$(1 - ig_0)e^{-i\phi} \left[T_{j+1} + T_{j-1} \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

,

$$(1 - ig_0)e^{-i\phi} \left[T_{j+1} + T_{j-1} \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

With the trial solution

,

$$(1 - ig_0)e^{-i\phi}\left[T_{j+1} + T_{j-1}\right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

With the trial solution
$$T_{j+1} = e^{-\eta}e^{im\pi}T_j,$$

Carlo Segre (Illinois Tech)

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

Carlo Segre (Illinois Tech)

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for T

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for T

$$(1 - ig_0)e^{-i\phi}\left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j\right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for ${\cal T}$ and noting that $\phi\equiv m\pi+\Delta$

$$(1 - ig_0)e^{-i\phi}\left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j\right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

$$(1 - ig_0)e^{-i\phi}[T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right]T_j$$

With the trial solution $T_{j+1} = e^{-\eta} e^{im\pi} T_j$, $T_{j-1} = e^{\eta} e^{-im\pi} T_j$ and substituting this solution into the defining equation for T and noting that $\phi \equiv m\pi + \Delta$

$$(1 - ig_0)e^{-i\phi} \left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

$$(1 - ig_0)e^{-im\pi}e^{-i\Delta} \left[e^{-\eta}e^{im\pi} + e^{\eta}e^{-im\pi} \right] = g^2 + (1 - ig_0)^2 + e^{-i2m\pi}e^{-i2\Delta}$$

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for ${\cal T}$ and noting that $\phi\equiv m\pi+\Delta$

$$(1 - ig_0)e^{-i\phi} \left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

$$(1 - ig_0)e^{-im\pi}e^{-i\Delta} \left[e^{-\eta}e^{im\pi} + e^{\eta}e^{-im\pi} \right] = g^2 + (1 - ig_0)^2 + e^{-i2m\pi}e^{-i2\Delta}$$

$$(1 - ig_0)e^{-i\Delta} \left[e^{-\eta} + e^{\eta} \right] = g^2 + (1 - ig_0)^2 + e^{-i2\Delta}$$

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for ${\cal T}$ and noting that $\phi\equiv m\pi+\Delta$

$$(1 - ig_0)e^{-i\phi} \left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

$$(1 - ig_0)e^{-im\pi}e^{-i\Delta} \left[e^{-\eta}e^{im\pi} + e^{\eta}e^{-im\pi} \right] = g^2 + (1 - ig_0)^2 + e^{-i2m\pi}e^{-i2\Delta}$$

$$(1 - ig_0)e^{-i\Delta} \left[e^{-\eta} + e^{\eta} \right] = g^2 + (1 - ig_0)^2 + e^{-i2\Delta}$$

assuming that g, g_0 , and Δ are very small quantities, we can expand

$$(1 - ig_0)e^{-i\phi} [T_{j+1} + T_{j-1}] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi}\right] T_j$$

With the trial solution $T_{j+1} = e^{-\eta}e^{im\pi}T_j, \quad T_{j-1} = e^{\eta}e^{-im\pi}T_j$

and substituting this solution into the defining equation for ${\cal T}$ and noting that $\phi\equiv m\pi+\Delta$

$$(1 - ig_0)e^{-i\phi} \left[e^{-\eta}e^{im\pi}T_j + e^{\eta}e^{-im\pi}T_j \right] = \left[g^2 + (1 - ig_0)^2 + e^{-i2\phi} \right] T_j$$

$$(1 - ig_0)e^{-im\pi}e^{-i\Delta} \left[e^{-\eta}e^{im\pi} + e^{\eta}e^{-im\pi} \right] = g^2 + (1 - ig_0)^2 + e^{-i2m\pi}e^{-i2\Delta}$$

$$(1 - ig_0)e^{-i\Delta} \left[e^{-\eta} + e^{\eta} \right] = g^2 + (1 - ig_0)^2 + e^{-i2\Delta}$$

assuming that g, $g_{0},$ and Δ are very small quantities, we can expand

$$(1 - ig_0)(1 - i\Delta - rac{\Delta^2}{2})\left[(1 - \eta + rac{\eta^2}{2}) + (1 + \eta + rac{\eta^2}{2})
ight] \ pprox g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

Carlo Segre (Illinois Tech)

31/31

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ pprox g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ pprox g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ \approx g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

 $2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ \approx g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

 $2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2
 $\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2$

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2

$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

Cancelling and expanding all products keeping only second order terms

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2
$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

The solution for the attenuation factor of the transmitted field is thus

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

Cancelling and expanding all products keeping only second order terms

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2

$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

The solution for the attenuation factor of the transmitted field is thus

$$i\eta = \pm \sqrt{(\Delta - g_0) - g^2}$$

Carlo Segre (Illinois Tech)

$$egin{aligned} &(1-ig_0)(1-i\Delta-rac{\Delta^2}{2})\left[(1-\eta+rac{\eta^2}{2})+(1+\eta+rac{\eta^2}{2})
ight] \ &pprox g^2+(1-2ig_0-g_0^2)+(1-i2\Delta-2\Delta^2) \end{aligned}$$

Cancelling and expanding all products keeping only second order terms

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2
$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

The solution for the attenuation factor of the transmitted field is thus

$$i\eta=\pm\sqrt{(\Delta-g_0)-g^2}$$

with fields

Carlo Segre (Illinois Tech)

31/31

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ \approx g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

Cancelling and expanding all products keeping only second order terms

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2

$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

The solution for the attenuation factor of the transmitted field is thus

$$i\eta = \pm \sqrt{(\Delta - g_0) - g^2}$$

with fields

$$T_{j+1} = e^{-\eta} e^{im\pi} T_j,$$

Carlo Segre (Illinois Tech)

$$(1 - ig_0)(1 - i\Delta - \frac{\Delta^2}{2}) \left[(1 - \eta + \frac{\eta^2}{2}) + (1 + \eta + \frac{\eta^2}{2})
ight] \ \approx g^2 + (1 - 2ig_0 - g_0^2) + (1 - i2\Delta - 2\Delta^2)$$

Cancelling and expanding all products keeping only second order terms

$$(1 - ig_0 - i\Delta - g_0\Delta - \frac{\Delta^2}{2})(2 + \eta^2) \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2$$

2 - 2ig_0 - 2i\Delta - 2g_0\Delta - \Delta^2 + \eta^2 \approx g^2 + 2 - 2ig_0 - 2i\Delta - g_0^2 - 2\Delta^2
$$\eta^2 \approx g^2 - g_0^2 + 2g_0\Delta - \Delta^2 = g^2 - (\Delta - g_0)^2$$

The solution for the attenuation factor of the transmitted field is thus

$$i\eta = \pm \sqrt{(\Delta - g_0) - g^2}$$

with fields

$$T_{j+1} = e^{-\eta} e^{im\pi} T_j, \quad S_{j+1} = e^{-\eta} e^{im\pi} S_j$$

Carlo Segre (Illinois Tech)