
Today’s outline - October 09, 2024

• Lattice & basis functions

• Reciprocal lattice for FCC

• Equivalence of Laue & Bragg conditions

• Crystal structure factor

• Lattices & space groups

Reading Assignment: Chapter 5.4

Homework Assignment #04:
Chapter 4: 2,4,6,7,10
due Monday, October 14, 2024

Homework Assignment #05:
Chapter 5: 1,3,7,9,10
due Monday, October 28, 2024
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Scattering from ordered crystals

Liquid scattering and small angle scattering provide structural information
about highly disordered systems and long length scales, respectively.

Another aspect of kinematical scattering is what is obtained from ordered
crystalline materials.

In this case, the distances probed are similar to those in liquid scattering but
the sample has an ordered lattice which results in very prominent diffraction
peaks separated by ranges with zero scattered intensity.

We will now proceed to develop a model for this kind of scattering starting
with some definitions in 2D space.
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Types of lattice vectors
R⃗n = n1a⃗1 + n2a⃗2

a2

a1

primitive

a2

a1

non-primitive

a2

a1

non-conventional

a2

a1

sometimes conventional axes...

a2

a1

...are not primitive
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Miller indices
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a1
h
,

a2
k

for a lattice with orthogonal unit vectors
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Reciprocal lattice
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a* = 2π/a1 1

a* = 2π/a2 2

a⃗∗1 =
2π
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a⃗3 × a⃗1 a⃗∗3 =
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a⃗1 × a⃗2
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The lattice and basis functions

If the basis of a one-dimensional system is described by the function B(x) then the crystal is
described by the function

C(x) =
∑
n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =
∑
n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ⋆ B(x) =
∫ ∞

−∞
L(x ′)B(x − x ′)dx ′ =

∫ ∞

−∞

∑
n

δ(x ′ − na)B(x − x ′)dx ′

=
∑
n

∫ ∞

−∞
δ(x ′ − na)B(x − x ′)dx ′ =

∑
n

B(x − na) = C(x)
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Scattering amplitude

F crystal(Q⃗) =
N∑
l

fl(Q⃗)e i Q⃗ ·⃗rl

=
N∑

R⃗n+r⃗j

fj(Q⃗)e i Q⃗·(R⃗n+r⃗j )

=
∑
j

fj(Q⃗)e i Q⃗ ·⃗rj
∑
n

e i Q⃗·R⃗n = F unit cellF lattice

Since F crystal(Q⃗) is simply the Fourier Transform of the crystal function, C(x) = L(x) ⋆ B(x),
it must be the product of the Fourier Transforms of L(x) and B(x). F lattice is a very large sum
(∼ 1012) so the only time it gives values appreciably greater than 1 is when:

Q⃗ · R⃗n = 2πm, m = integer G⃗hkl = ha⃗∗1 + ka⃗∗2 + l a⃗∗3, h, k, l = integer

G⃗hkl · R⃗n = (n1a⃗1 + n2a⃗2 + n3a⃗3) · (ha⃗∗1 + ka⃗∗2 + l a⃗∗3) = 2π(hn1 + kn2 + ln3) = 2πm

∴ Q⃗ = G⃗hkl
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

a⃗1 =
a

2
(ŷ + ẑ), a⃗2 =

a

2
(ẑ + x̂), a⃗3 =

a

2
(x̂ + ŷ)

a

a3

a1

a2

The volume of the unit cell is

vc = a⃗1 · a⃗2 × a⃗3 = a⃗1 ·
a2

4
(ŷ + ẑ − x̂) =

a3

4

a⃗∗1 =
2π

vc
a⃗2 × a⃗3 =

2π

vc

a2

4
(ŷ + ẑ − x̂) =

4π

a

(
ŷ

2
+

ẑ

2
− x̂

2

)
a⃗∗2 =

4π

a

(
ẑ

2
+

x̂

2
− ŷ

2

)
, a⃗∗3 =

4π

a

(
x̂

2
+

ŷ

2
− ẑ

2

)

which is a body-centered cubic lattice
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ŷ

2
+

ẑ
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ŷ

2
− ẑ
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ŷ

2
− ẑ
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(ŷ + ẑ − x̂) =

4π

a

(
ŷ
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(ŷ + ẑ − x̂) =

a3

4

a⃗∗1 =
2π

vc
a⃗2 × a⃗3 =

2π

vc

a2

4
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection we consider the lattice sum in
1D

with R⃗n = na⃗ for N unit cells which evaluates to the closed form

SN(Q⃗) =
∑
n

e i Q⃗·R⃗n =
N−1∑
n=0

e iQna −→ |SN(Q)| = sin(NQa/2)

sin(Qa/2)
=

sin(N[h + ξ]π)

sin([h + ξ]π)

this leads to the Laue condition Q⃗ = ha⃗∗

if the Laue condition is not exactly fulfilled then Q = [h + ξ]a∗ and the sum becomes

the numerator can be simplified as

sin(Nπ[h + ξ]) =�����: 0
sin(Nπh) cos(Nπξ) +������: 1

cos(Nπh) sin(Nπξ) = ± sin(Nπξ)

the peak height can be estimated for small ξ as

|SN(Q)| = sin(Nπξ)

sin(πξ)
≈ Nπξ

πξ
→ N as ξ → 0

and the half width measured at the first minimum of the lattice sum

|SN(Q)| → 0, Nπξ = π, ξ1/2 ≈ 1
2N
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Lattice sum in 1D

the peak area can be obtained by integration

∫ +1/2N

−1/2N
|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)
dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξ
dξ

= N

∫ +1/2N

−1/2N
dξ = N

[
ξ
∣∣∣+1/2N

−1/2N
= 1

for very large N, the lattice sum approaches a delta function and since Q = [h + ξ]a∗ we have

|SN(ξ)| → δ(ξ),

ξ =
Q − ha∗

a∗

=
Q − Gh

a∗

|SN(Q)| → a∗
∑
Gh

δ(Q − Gh)

=
N−1∑
n=0
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Lattice sum modulus

the 1D modulus squared

in 2D, with N1 × N2 = N unit cells

and similarly in 3D

|SN(Q)|2 → Na∗
∑
Gh

δ(Q − Gh)

∣∣∣SN(Q⃗)
∣∣∣2 → (N1a

∗
1)(N2a

∗
2)
∑
G⃗hk

δ(Q⃗ − G⃗hk)

= NA∗
∑
G⃗

δ(Q⃗ − G⃗hk)

∣∣∣SN(Q⃗)
∣∣∣2 → NV ∗

c

∑
G⃗hkl

δ(Q⃗ − G⃗hkl)
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Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction is de-
rived by assuming specular reflection from
parallel planes separated by a distance d .

The ray reflecting from the deeper plane
travels an extra distance 2d sin θ

If there is to be constructive interference,
this additional distance must correspond to
an integer number of wavelengths and we
get the Bragg condition

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 October 09, 2024 12 / 20



Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction is de-
rived by assuming specular reflection from
parallel planes separated by a distance d .

The ray reflecting from the deeper plane
travels an extra distance 2d sin θ

If there is to be constructive interference,
this additional distance must correspond to
an integer number of wavelengths and we
get the Bragg condition

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 October 09, 2024 12 / 20



Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction is de-
rived by assuming specular reflection from
parallel planes separated by a distance d .

The ray reflecting from the deeper plane
travels an extra distance 2d sin θ

If there is to be constructive interference,
this additional distance must correspond to
an integer number of wavelengths and we
get the Bragg condition

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 October 09, 2024 12 / 20



Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction is de-
rived by assuming specular reflection from
parallel planes separated by a distance d .

The ray reflecting from the deeper plane
travels an extra distance 2d sin θ

If there is to be constructive interference,
this additional distance must correspond to
an integer number of wavelengths and we
get the Bragg condition

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 October 09, 2024 12 / 20



Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction is de-
rived by assuming specular reflection from
parallel planes separated by a distance d .

The ray reflecting from the deeper plane
travels an extra distance 2d sin θ

If there is to be constructive interference,
this additional distance must correspond to
an integer number of wavelengths and we
get the Bragg condition

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 October 09, 2024 12 / 20



Laue condition

The Laue condition states that the scatter-
ing vector must be equal to a reciprocal lat-
tice vector

Q⃗ = G⃗hk

Q = 2k sin θ

=
2π

d

2d sin θ =
2π

k

= λ

Thus the Bragg and Laue conditions are
equivalent

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k

k

Q

2π

d
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

Must show that for each point in reciprocal space, there
exists a set of planes in the real space lattice such that:

G⃗hkl is perpendicular to the planes with Miller indices
(hkl) and

|G⃗hkl | =
2π

dhkl
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The plane with Miller indices (hkl) intersects the three
basis vectors of the lattice at a1/h, a2/k , and a3/l

Any vector, v⃗ , in this plane can be expressed as a linear
combination of two non-parallel vectors, v⃗1 and v⃗2

v⃗1 =
a⃗3
l
− a⃗1

h

, v⃗2 =
a⃗1
h
− a⃗2

k
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a⃗1
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a⃗2
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+ ϵ1
a⃗3
l

)
= 2π(ϵ2 − ϵ1 − ϵ2 + ϵ1) = 0

Thus G⃗hkl is indeed normal to the plane with Miller indices (hkl)
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The spacing between planes (hkl) is simply given by the
distance from the origin to the plane along a normal
vector

This can be computed as the projection of any vector
which connects the origin to the plane onto the unit vec-
tor in the G⃗hkl direction. In this case, we choose, a⃗1/h

Ĝhkl =
G⃗hkl

|G⃗hkl |

Ĝhkl ·
a⃗1
h

=
(ha⃗∗1 + ka⃗∗2 + l a⃗∗3)

|G⃗hkl |
· a⃗1
h

=
2π

|G⃗hkl |
= dhkl
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BCC structure factor

In the body-centered cubic structure, there are 2 atoms in the conventional, cubic unit cell.
These are located at

r⃗1 = 0, r⃗2 =
1

2
(⃗a1 + a⃗2 + a⃗3)

the unit cell structure factor is thus

F bcc
hkl = f (G⃗ )

∑
j

e i G⃗ ·⃗rj

= f (G⃗ )
(
1 + e iπ(h+k+l)

)
= f (G⃗ )×

{
2 h + k + l = 2n

0 otherwise
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FCC structure factor

In the face-centered cubic structure, there are 4 atoms in the conventional, cubic unit cell.
These are located at

r⃗1 = 0, r⃗2 =
1

2
(⃗a1 + a⃗2), r⃗3 =

1

2
(⃗a2 + a⃗3), r⃗4 =

1

2
(⃗a1 + a⃗3)

the unit cell structure factor is thus

F fcc
hkl = f (G⃗ )

∑
j

e i G⃗ ·⃗rj

= f (G⃗ )
(
1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l)

)
= f (G⃗ )×

{
4 h + k , k + l , h + l = 2n

0 otherwise
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which leads to 8 atoms in
the conventional unit cell. These are located at

r⃗1 = 0, r⃗2 =
1

2
(⃗a1 + a⃗2), r⃗3 =

1

2
(⃗a2 + a⃗3), r⃗4 =

1

2
(⃗a1 + a⃗3), r⃗5 =

1

4
(⃗a1 + a⃗2 + a⃗3)

r⃗6 =
1

4
(3⃗a1 + 3⃗a2 + a⃗3), r⃗7 =

1

4
(⃗a1 + 3⃗a2 + 3⃗a3), r⃗8 =

1

4
(3⃗a1 + a⃗2 + 3⃗a3)

F diamond
hkl = f (G⃗ )

(
1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2
)

This is non-zero when h,k ,l all even and h+k+ l =
4n or h,k ,l all odd
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