
Today’s outline - September 30, 2024

• Molecule scattering

• Liquid scattering

• Small angle x-ray scattering

• Calculating Rg

• Porod analysis

Reading Assignment: Chapter 4.5; Chapter 5.1

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Friday, October 05, 2024

Homework Assignment #04:
Chapter 4: 2,4,6,7,10
due Monday, October 14, 2024
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Scattering from molecules

From the atomic form factor, we would like to ab-
stract to the next level of complexity, a molecule (we
will leave crystals for Chapter 5).

Fmol(Q⃗) =
∑
j

fj(Q⃗)e i Q⃗ ·⃗rj

As an example take the CF4 molecule

We have the following relationships:

|OA|

= |OB| = |OC | = |OD| = 1

OA = OO ′ + O ′A

OB = OO ′ + O ′B
OA · OD = 1 · 1 · cos u = −z

= OA · OB
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The CF4 scattering factor

− z = (OO ′ + O ′A) · (OO ′ + O ′B)

= z2 + 0 + 0 + O ′A · O ′B = z2 + (O ′A)2 cos(120◦)

= z2 + (1− z2) cos(120◦) = z2 − 1

2
(1− z2)

0 = 3z2 + 2z − 1

z =
1

3

u = cos−1(−z) = 109.5◦

Fmol
± = f C (Q) + f F (Q)

[
3e∓iQR/3 + e±iQR

] but from the triangle OO ′A

(O ′A)2 = 1− z2
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The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]

|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√
8/3R)

Q
√

8/3R

The plot shows the structure factor of CF4, its
orientationally averaged structure factor, and
the form factor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the spherically aver-
aged structure factor compared to the inelastic
scattering for CF4
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The radial distribution function

Ordered 2D crystal Amorphous solid or liquid

Take a circle (sphere) of radius r and thickness dr and count the number of atom centers lying
within the ring. Then expand the ring radius by dr to map out the radial distribution function
g(r)
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Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

I (Q⃗) = f (Q⃗)2
∑
n

e i Q⃗·r⃗n
∑
m

e−i Q⃗·r⃗m = f (Q⃗)2
∑
n

∑
m

e i Q⃗·(r⃗n−r⃗m)

= Nf (Q⃗)2 + f (Q⃗)2
∑
n

∑
m ̸=n

e i Q⃗·(r⃗n−r⃗m)

The sum over m ̸= m is now replaced with an integral of the continuous atomic pair density
function, ρn(⃗rnm) and adding and subtracting the average atomic density ρat

I (Q⃗) = Nf (Q⃗)2 + f (Q⃗)2
∑
n

∫
V
ρn(⃗rnm)e

i Q⃗·(r⃗n−r⃗m) dVm

= Nf (Q⃗)2+ f (Q⃗)2
∑
n

∫
V
[ρn(⃗rnm)− ρat ]e

i Q⃗·(r⃗n−r⃗m) dVm

+ f (Q⃗)2ρat
∑
n

∫
V
e i Q⃗·(r⃗n−r⃗m) dVm = I SRO(Q⃗)

+ I SAXS(Q⃗)
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Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

I SRO(Q⃗) = Nf (Q⃗)2 + f (Q⃗)2
∑
n

∫
V
[ρn(⃗rnm)− ρat ] e

i Q⃗·(⃗rn−r⃗m)dV

When we average over all choices of origin in the liquid, ⟨ρn(⃗rnm)⟩ → ρ(⃗r) and the sum
simplifies to N giving:

I SRO(Q⃗) = Nf (Q⃗)2 + Nf (Q⃗)2
∫
V
[ρ(⃗r)− ρat ] e

i Q⃗ ·⃗rdV

Performing an orientational average results in

I SRO(Q⃗) = Nf (Q⃗)2 + Nf (Q⃗)2
∫ ∞

0
4πr2 [ρ(r)− ρat ]

sinQr

Qr
dr
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S(Q) - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, S(Q).

S(Q) =
I SRO(Q⃗)

Nf (Q)2
= 1 +

4π

Q

∫ ∞

0
r [ρ(r)− ρat ] sin(Qr)dr

When Q → ∞, the short wavelength limit,
1/Q → 0 eliminates all dependence on the
interparticle correlations and S(Q) → 1.

When Q → 0, i.e. the long wavelength limit,
sin(Qr)/Q → r and S(Q) is dominated by
the density fluctuations in the system

We can rewrite the structure factor equation

Q [S(Q)− 1] =

∫ ∞

0
4πr [ρ(r)− ρat ] sin(Qr)dr =

∫ ∞

0
H(r) sin(Qr)dr

Which is the sine Fourier Transform of the deviation of the atomic density from its average,
H(r) = 4πr [g(r)− 1]
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Radial distribution function

We can invert the Fourier Transform to obtain

H(r) =
2

π

∫ ∞

0
Q [S(Q)− 1] sin(Qr)dQ

and thus the radial distribution function can be obtained from the structure factor (an
experimentally measureable quantity).

g(r) = 1 +
1

2π2rρat

∫ ∞

0
Q [S(Q)− 1] sin(Qr)dQ

This formalism holds for both non-crystalline solids and liquids, even though inelastic
scattering dominates in the latter.

The relation between radial distribution function and structure factor can be extended to
multi-component systems where g(r) → gij(r) and S(Q) → Sij(Q).
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Structure in supercooled liquid metals

Liquid Ni metal was suspended electrostatically and allowed to
cool from its liquidus temperature of 1450◦C.

Measurement of the liquid structure factor shows supercooling
with short range order.

Integration of the radial distribution function indicates the pres-
ence of icosahedral clusters which inhibit crystallization.

Details in the shape of the oscillations can
be indicative of distortions in the icosahedra
which depend on the metal species.

“Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids,” G.W. Lee et al.
Phys. Rev. Lett 93, 037802 (2004).
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Water dynamics

Liquid scattering can be used to study dynamics

In this article, the authors measured the liquid
scattering as a function of both momentum, Q,
and energy, E , transfer by using analyzers set
for a specific energy (21.747 keV) but varying Q
and then scanning the incident energy at fixed
incident angle

The Van Hoff function can be obtained by a
double Fourier transform

g(r , t)− 1 =
1

2ρπ2r

∫ ∫
e iωt sin(Qr)QS(Q,E )dQ dE

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Water dynamics

The peak below 1.5Å represents the
self motion of the central atom while
the data at longer distances represents
the collective motions of two different
atoms, in this case the oxygens

The first and second peaks are highly
coupled in space and time and merge
within 0.8 ps. This behavior is dif-
ferent from liquid metals and leads to
the viscosity of water.

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Small angle x-ray scattering

I (Q⃗) = Nf (Q⃗)2 + f (Q⃗)2
∑
n

∫
V
[ρn(⃗rnm)− ρat ]e

i Q⃗·(r⃗n−r⃗m) dVm + f (Q⃗)2ρat
∑
n

∫
V
e i Q⃗·(r⃗n−r⃗m) dVm

Recall that there was an additional term in the scattering intensity which becomes important
at small Q.

I SAXS(Q⃗) = f 2
∑
n

∫
V
ρate

i Q⃗·(⃗rn−r⃗m)dVm = f 2
∑
n

e i Q⃗ ·⃗rn
∫
V
ρate

−i Q⃗ ·⃗rmdVm

= f 2
∫
V
ρate

i Q⃗ ·⃗rndVn

∫
V
ρate

−i Q⃗ ·⃗rmdVm =

∣∣∣∣∫
V
ρsle

i Q⃗ ·⃗rdV

∣∣∣∣2
Where we have assumed sufficient averaging and introduced ρsl = f ρat . This final expression
looks just like an atomic form factor but the charge density that we consider here is on a much
longer length scale than an atom.
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∑
n

∫
V
[ρn(⃗rnm)− ρat ]e

i Q⃗·(r⃗n−r⃗m) dVm + f (Q⃗)2ρat
∑
n

∫
V
e i Q⃗·(r⃗n−r⃗m) dVm
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I SAXS(Q⃗) = f 2
∑
n

∫
V
ρate

i Q⃗·(⃗rn−r⃗m)dVm = f 2
∑
n

e i Q⃗ ·⃗rn
∫
V
ρate

−i Q⃗ ·⃗rmdVm

= f 2
∫
V
ρate

i Q⃗ ·⃗rndVn

∫
V
ρate
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∣∣∣∣∫
V
ρsle

i Q⃗ ·⃗rdV

∣∣∣∣2
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The SAXS experiment
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Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

Assume that the scattering length density of each identical particle (molecule) is given by ρsl ,p
and the scattering length density of the solvent is ρsl ,0.

I SAXS(Q⃗) =

∣∣∣∣∣
∫
Vp

ρsle
i Q⃗ ·⃗rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)
2

∣∣∣∣∣
∫
Vp

e i Q⃗ ·⃗rdVp

∣∣∣∣∣
2

If we introduce the single-particle form factor F(Q⃗):

F(Q⃗) =
1

Vp

∫
Vp

e i Q⃗ ·⃗rdVp I SAXS(Q⃗) = ∆ρ2V 2
p |F(Q⃗)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the morphology of the particle
(size and shape).
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Scattering from a sphere

There are only a few morphologies which can be
computed exactly and the simplest is a constant
density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dϕ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function of the first
kind

0

0 5 10

j 1
(x

)

x
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Scattering from a sphere

I (Q) = ∆ρ2V 2
p

∣∣∣∣3J1(QR)QR

∣∣∣∣2

= ∆ρ2V 2
p

∣∣∣∣3sin(QR)− QR cos(QR)

Q3R3

∣∣∣∣2
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Q (Å
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Guinier analysis

I SAXS(Q⃗) = ∆ρ2V 2
p |F(Q⃗)|2,

F(Q⃗) = 3

[
sin(QR)− QR cos(QR)

Q3R3

]
In the long wavelength limit QR → 0 we can approximate the scattering factor with the first
terms of the sum

F(Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · · − QR

(
1− Q2R2

2
+

Q4R4

24
− · · ·

)]

this simplifies to F(Q) ≈ 1− Q2R2

10
and

I SAXS(Q) ≈ ∆ρ2V 2
p

[
1− Q2R2

10

]2
≈ ∆ρ2V 2

p

[
1− Q2R2

5

]
≈ ∆ρ2V 2

p e
−Q2R2/5, QR ≪ 1
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F(Q) ≈ 1− Q2R2

10
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Calculation of Rg

I (Q) ≈ ∆ρ2V 2
p e

−Q2R2
g/3

The radius of gyration Rg is defined as the second moment of the volume
occupied by the particle

in terms of the scattering length density, it can be rewritten as

R2
g =

1

Vp

∫
Vp

r2dVp =

∫
Vp

ρsl ,p (⃗r)r
2dVp∫

Vp
ρsl ,p (⃗r)dVp

after orientational averaging this expression can be used to extract Rg from
experimental data using

I SAXS1 (Q) ≈ ∆ρ2V 2
p e

−Q2R2
g/3

this expression holds for uniform and non-uniform densities
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