
Today’s outline - September 18, 2024

• Multilayer monchromator

• Graded interfaces

• Rough surfaces

• Reflectivity research topics

Reading Assignment: Chapter 3.9–3.10

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Monday, September 30, 2024

Homework Assignment #04:
Chapter 4: 2,4,6,7,10
due Monday, October 14, 2024
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Multilayer design

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ∼ 2 degrees with
0.5% and 1.0% bandwidth

Common design parameters include bilayer filler fraction Γ = 0.5, roughness σ = 0.35 nm, and
number of bilayers N = 300

MoSi2/B4C and Mo/B4C were selected for the 0.5% and 1.0% bandwidth coatings,
respectively

0.5% Bandwidth 1.0% Bandwidth

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Multilayer fabrication & testing

The 0.5% and 1.0% bandwidth layers were de-
posited side-by-side on a monolithic 20 mm × 30
mm × 100 mm polished silicon block

When illuminated with 12 keV x-rays the two multilayers showed diffraction peaks at nearly
the same angle. The reflectivities were both over 75% and the bandwidths were 0.52% and
0.86%, respectively.

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Multilayer spectrum

The reflectivity over a wide range
of angles at 8 keV shows total ex-
ternal reflection at low angles with
cutoff at zero degrees

First and second order multilayer
diffraction peaks appear at higher
angles

A. Khounsary et al., “A dual-bandwidth multilayer
monochromator system,” Proc. SPIE 10760, 107600j
(2018).
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Graded interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.

The reflectivity of this kind of interface can be calculated
best in the kinematical limit (Q > Qc).

The density profile of the interface can be described by
the function f (z) which approaches 1 as z → ∞.

The reflectivity can be computed as the superposition of
the reflectivity of a series of infinitesmal slabs of thickness
dz at a depth z .
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Reflectivity of a graded interface

δr(Q) = −i
Q2

c

4Q
f (z)dz

r(Q) = −i
Q2

c

4Q
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c

4Q

∫ ∞

−∞
f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞

−∞
f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q ≫ 1, the
integral is the Fourier transform of the density
gradient, ϕ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞

−∞

(
df

dz

)
e iQzdz

∣∣∣∣2
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R(Q)

RF (Q)
=

∣∣∣∣∫ ∞

−∞

(
df

dz
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e iQzdz
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Reflectivity of a graded interface
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The error function - a specific case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√
2σ

0
e−t2dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√
2πσ2

e−
1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection
coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

θ
2

θ
1

V

Taking C to be

its divergence is

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V . The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss’ theorem.

rV = −r0

∫
V
(ρdr⃗)e i Q⃗ ·⃗r ,

∫
V

(
∇⃗ · C⃗

)
dr⃗ =

∫
S
C⃗ · dS⃗

C⃗ = ẑ
e i Q⃗ ·⃗r

iQz
, ∇⃗ · C⃗ =

e i Q⃗ ·⃗r

iQz
iQz = e i Q⃗ ·⃗r

rV = −r0ρ

∫
V
∇⃗ ·

(
ẑ
e i Q⃗ ·⃗r

iQz

)
dr⃗ = −r0ρ

∫
S

(
ẑ
e i Q⃗ ·⃗r

iQz

)
· dS⃗ = −r0ρ

1

iQz

∫
S
e i Q⃗ ·⃗rdxdy = rS
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e i Q⃗ ·⃗r

iQz
, ∇⃗ · C⃗ =

e i Q⃗ ·⃗r

iQz
iQz = e i Q⃗ ·⃗r

rV = −r0ρ

∫
V
∇⃗ ·

(
ẑ
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Rough surfaces

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by
V .

θ
2

θ
1

V

rV = −r0ρ

∫
V
e i Q⃗ ·⃗r d3r

rS = −r0ρ
1

iQz

∫
S
e i Q⃗ ·⃗rdxdy

Using Gauss’ theorem, this volume integral
can be converted to an integral over the sur-
face of the illuminated volume.

This integral is highly model dependent and
can now be evaluated for a number of dif-
ferent cases.
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the ẑ
direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

θ
2

θ
1

V

Thus, the integral need only be evaluated over the
top, rough surface whose variation we characterize
by the function h(x , y)

Q⃗ · r⃗ = Qzh(x , y) + Qxx + Qyy

rS = −r0ρ
1

iQz

∫
S
e i Q⃗ ·⃗rdxdy

= − r0ρ

iQz

∫
S
e iQzh(x ,y)e i(Qxx+Qyy)dxdy

dσ

dΩ
= r2S =

(
r0ρ

Qz

)2 ∫
S

∫
S ′
e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′
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Scattering cross section

If we assume that h(x , y)− h(x ′, y ′) depends only on the relative difference in position, x − x ′

and y − y ′ the four dimensional integral collapses to the product of two two dimensional
integrals

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 ∫
S ′
dx ′dy ′

∫
S

〈
e iQz (h(0,0)−h(x ,y))

〉
e iQxxe iQyydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1

∫ 〈
e iQz (h(0,0)−h(x ,y))

〉
e iQxxe iQyydxdy

where A0/ sin θ1 is just the illuminated surface area and the term in the angled brackets is an
ensemble average over all possible choices of the origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are Gaussian and(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨[h(0,0)−h(x ,y)]2⟩/2e iQxxe iQyydxdy
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Limiting Case - Flat surface(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨[h(0,0)−h(x ,y)]2⟩/2e iQxxe iQyydxdy

Define a function g(x , y) =
〈
[h(0, 0)− h(x , y)]2

〉
which can be modeled in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta function

2πδ(q) =

∫
e iqxdx

the expression for the scattered intensity
in terms of the momentum transfer wave
vectors is

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e iQxxe iQyydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
δ(Qx)δ(Qy )

Isc =

(
I0
A0

)(
dσ

dΩ

)
∆Qx∆Qy

k2 sin θ2
−→ R(Qz) =

Isc
I0

=

(
Q2

c /8

Qz

)2(
1

Qz/2

)2
=

(
Qc

2Qz

)4
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Uncorrelated surfaces(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨[h(0,0)−h(x ,y)]2⟩/2e iQxxe iQyydxdy

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and〈
[h(0, 0)− h(x , y)]2

〉
= ⟨h(0, 0)⟩2 − 2 ⟨h(0, 0)⟩ ⟨h(x , y)⟩+ ⟨h(x , y)⟩2 = 2

〈
h2
〉

This quantity is related to the rms roughness, σ by σ2 =
〈
h2
〉
and the cross-section is(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨h2⟩/2e iQxxe iQyydxdy =

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

e iQxxe iQyydxdy

Which, apart from the term containing σ is simply the Fresnel cross-section for a flat surface(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
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Surface roughness effect

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2

for a perfectly flat surface, we get the
Fresnel reflectivity derived for a thin slab

for an uncorrelated rough surface, the
reflectivity is reduced by an exponen-
tial factor controlled by the rms surface
roughness σ

this leads to a rapid drop in reflectivity
as the surface roughness increases 0 0.2 0.4 0.6 0.8 1
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Correlated surfaces

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨[h(0,0)−h(x ,y)]2⟩/2e iQxxe iQyydxdy

Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,

g(x , y) = g(r) = g(
√

x2 + y2)

In the limit that the correlations are unbounded as r → ∞, g(x , y) is given by g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h ≪ 1 smoother surface for h → 1

If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate
the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx
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Unbounded correlations - limiting cases(
dσ

dΩ

)
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(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak.

h = 1/2: Lorentzian with half-width AQ2
z /2(

dσ

dΩ

)
=

(
A0r

2
0ρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

h = 1: Gaussian with variance AQ2
z(

dσ

dΩ

)
=

(
2
√
πA0r

2
0ρ

2

2 sin θ1

)
1

Q4
z
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Bounded correlations(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z ⟨[h(0,0)−h(x ,y)]2⟩/2e iQxxe iQyydxdy

If the correlations remain bounded as r → ∞

g(x , y) = 2
〈
h2
〉
− 2 ⟨h(0, 0)h(x .y)⟩ = 2σ2 − 2C (x , y), C (x , y) = σ2e−(r/ξ)2h

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

eQ
2
zC(x ,y)e iQxxe iQyydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫ [

eQ
2
zC(x ,y) − 1 + 1

]
e iQxxe iQyydxdy

=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
+

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
Fdiffuse(Q⃗)

And the scattering exhibits both a specular peak, reduced by uncorrelated roughness, and
diffuse scattering from the correlated portion of the surface
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Layering in liquid films

TEHOS, tetrakis–(2-ethylhexoxy)–silane, a
non-polar, roughly spherical molecule, was
deposited on Si(111) single crystals

Specular reflection measurements were
made at MRCAT (Sector 10 at APS) and
at X18A (at NSLS).

Deviations from uniform density are used to
fit experimental reflectivity

C.-J. Yu et al., “Observation of molecular layering in thin liquid films using x-ray reflectivity”, Phys. Rev. Lett. 82, 2326–2329 (1999).
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Layering in liquid films

The peak below 10Å appears in all but the thickest
film and depends on the interactions between film
and substrate.

There are always peaks between 10-20Å and 20-
30Å and a broad peak at the free surface showing
the presence of ordered layers of molecules.

The authors conclude that the presence of a hard
smooth surface is required for ordering and there-
fore deviations from an ideal, isotropic liquid.

C.-J. Yu et al., “Observation of molecular layering in thin liquid films using x-ray
reflectivity,” Phys. Rev. Lett. 82, 2326–2329 (1999).
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Film growth kinetics

The goal of this project was to understand the evolution of surface roughness
during the growth of a silver thin film.

The question is whether there is surface diffusion of the deposited atoms during
the growth

In order to study this question, a silicon substrate was placed in the growth cham-
ber and illuminated with x-rays after a period of deposition

The sample was flipped to a downward facing position and silver atoms deposited
for a period of time, then flipped to an upward facing position for the reflectivity
measurements

5 deposition with thicknesses varying from 10 nm to 150 nm were studies

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of vapor-deposited silver films,” Phys. Rev. B 49, 4902–4907 (1994).
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Film growth kinetics

Gaussian roughness profile with a “rough-
ness” exponent 0 < h < 1.

As the film is
grown by vapor deposition, the rms width
σ, grows with a “growth exponent” β and
the correlation length in the plane of the
surface, ξ evolves with the “dynamic” scal-
ing exponent, zs = h/β.

g(r) ∝ r2h σ ∝ tβ

ξ ∝ t1/zs ⟨h⟩ ∝ t

h ≈ 0.33, β ≈ 0.25 for no diffusion.

h ≈ 0.67, β ≈ 0.20 for diffusion.

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of
vapor-deposited silver films,” Phys. Rev. B 49, 4902–4907 (1994).

Ag/Si films: 10nm (A), 18nm (B),
37nm (C), 73nm (D), 150nm (E)
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Film growth kinetics

h can be obtained from the diffuse off-
specular reflection which should vary as

I (qz) ∝ σ−2/hq
−(3+1/h)
z

This gives h = 0.63 but is this correct?

Measure it directly using STM

g(r) = 2σ2
[
1− e(r/ξ)

2h
]

h = 0.78, ξ = 23nm, σ = 3.2nm

Thus h = 0.70, β = 0.26 and it is likely
that diffusion on the surface after deposi-
tion is occuring

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of vapor-
deposited silver films,” Phys. Rev. B 49, 4902–4907 (1994).
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Liquid metal surfaces

X-ray reflectivity using synchrotron radiation
has made possible the study of the surface of
liquid metals

a liquid can be described as charged ions in a
sea of conduction electrons

this leads to a well-defined surface structure as
can be seen in liquid gallium

contrast this with the scattering from liquid
mercury

P. Pershan, “Review of the highlights of x-ray studies of liquid metal surfaces,”
J. Appl. Phys. 116, 222201 (2014).
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Liquid metal eutectics

High vapor pressure and thermal excitations
limit the number of pure metals which can be
studied but alloy eutectics provide many pos-
sibilities

tune x-rays around the Bi absorption edge at
13.42 keV and measure a Bi43Sn57 eutectic

surface layer is rich in Bi (95%), second layer
is deficient (25%), and third layer is rich in Bi
(53%) once again

O. Shpyrko et al., “Atomic-scale surface demixing in a eutectic liquid
BiSn alloy,” Phys. Rev. Lett. 95, 106103 (2005).
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