
Today’s outline - September 16, 2024

• Limiting cases of Fresnel equations

• Reflection from a thin slab

• Kiessig fringes

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

Reading Assignment: Chapter 3.7–3.8

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Monday, September 30, 2024

Homework Assignment #04:
Chapter 4: 2,4,6,7,10
due Monday, October 14, 2024
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Fresnel equation review

The scattering vector (or momentum transfer)
is given by

and for small angles

similarly for the critical angle we define

this leads to reduced scattering vectors

Q =
4π

λ
sinα = 2k sinα ≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =
Q

Qc
≈ 2k

Qc
α, q′ ≈ 2k

Qc
α′

using the reduced scattering vectors, the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =
2k

Q2
c

µ

r =
q − q′

q + q′
, t =

2q

q + q′
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Limiting cases - q ≫ 1

Starting with Snell’s Law

rearrange and simplify for q ≫ 1 and
real

this implies Re(q′) ≈ q, while the
imaginary part can be computed by
assuming

comparing to the equation above

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2
(
1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµ
q

The reflection and transmission coefficients are thus

r =
(q − q′)(q + q′)

(q + q′)(q + q′)
=

q2 − q′ 2

(q + q′)2
≈ 1

(2q)2
, t =

2q

q + q′
≈ 1 , Λ ≈ α

µ

the reflected wave is in phase with the incident wave, almost total transmission
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Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1

, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)

≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′

= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′

≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′

= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ≪ 1

Starting with Snell’s Law again

when q ≪ 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 4 / 21



Limiting cases - q ∼ 1

Using Snell’s Law, with q ∼ 1,

adding and subtracting bµ,

q′ is complex with real and imagi-
nary parts of equal magnitude.

since
√
bµ ≪ 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1) = bµ(1 + i)2

q′ ≈
√
bµ(1 + i)

r=
(q − q′)

(q + q′)
≈ q

q
≈ 1

t=
2q

q + q′
≈ 2q

q
= 2

Λ ≈ 1

Qc Im(q′)
≈ 1

Qc

√
bµ

The reflected wave is in phase with the incident, there is significant (larger amplitude than the
reflection) transmission with a large penetration depth.
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Review of interface effects

We have covered the interface boundary conditions which govern the transmission and
reflection of waves at a change in medium.

These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

n
0

n
1

r=
Q − Q ′

Q + Q ′

t=
2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to
absorption. We now consider what happens if there is a second interface encountered by the
transmitted wave before it dies away. That is, a thin slab of material on top of an infinite
substrate
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Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflection coefficients at each
interface are labeled:

n
0

n
1

r
01

t
01

∆

r01 – reflection in n0 off n1
t01 – transmission from n0 into n1

r12 – reflection in n1 off n2
t12 – transmission from n1 into n2

r10 – reflection in n1 off n0
t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events
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Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

n
0

n
1

n
2

∆

r01

+
t01r12t10

· p2

+
t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal. This adds a phase
shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab
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Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′

, t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2

∞∑
m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′ , t =
2Q

Q + Q ′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 16, 2024 9 / 21



Fresnel equation identity

Applying the Fresnel equations to the top interface

n
0

n
1

r
10

t
10

∆ r01 =
Q0 − Q1

Q0 + Q1

r10 =
Q1 − Q0

Q1 + Q0
= −r01

t01 =
2Q0

Q0 + Q1

t10 =
2Q1

Q1 + Q0

we can, therefore, construct the following identity

r201 + t01t10 =
(Q0 − Q1)

2

(Q0 + Q1)
2
+

2Q0

Q0 + Q1

2Q1

Q1 + Q0
=

Q2
0 − 2Q0Q1 + Q2

1 + 4Q0Q1

(Q0 + Q1)
2

=
Q2

0 + 2Q0Q1 + Q2
1

(Q0 + Q1)
2

=
(Q0 + Q1)

2

(Q0 + Q1)
2
= 1
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Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p
2 1

1− r10r12p2

= r01 +
(
1− r201

)
r12p

2 1

1− r10r12p2

=
r01 + r201r12p

2 +
(
1− r201

)
r12p

2

1− r10r12p2

rslab =
r01 + r12p

2

1 + r01r12p2
=

r01
(
1− p2

)
1− r201p

2

Using the identity

t01t10 = 1− r201

Expanding over a common denomina-
tor and recalling that r10 = −r01.

In the case of n0 = n2 there is the
further simplification of r12 = −r01.
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Kiessig fringes

p2 = e iQ1∆

rslab =
r01

(
1− p2

)
1− r201p

2

If we plot the reflectivity

Rslab = |rslab|2

These are the so=-called Kiessig fringes
which arise from interference between re-
flections at the top and bottom of the slab.
They have an oscillation frequency

2π/∆ = 0.092Å
−1

0 0.2 0.4 0.6 0.8 1

Q (Å
-1

)

0
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R
S
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b
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

q ≫ 1

|r01| ≪ 1 α > αc

r01 =
q0 − q1
q0 + q1

q0 + q1
q0 + q1

=
q20 − q21

(q0 + q1)
2
≈ 1

(2q0)
2
=

(
Qc

2Q0

)2

rslab =
r01

(
1− p2

)
1− r201p

2
≈ r01

(
1− p2

)
≈ r01

(
1− e iQ∆

)
≈

(
Qc

2Q0

)2 (
1− e iQ∆

)
= −16πρr0

4Q2
e iQ∆/2

(
e iQ∆/2 − e−iQ∆/2

)
= −i

(
4πρr0∆

Q

)
��

����sin(Q∆/2)

Q∆/2
����
e iQ∆/2

≈ −i
λρr0∆

sinα
= rthin slab

Since Q∆ ≪ 1 for a thin slab
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Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ composed of
two materials, A and B which have a density contrast
(ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter related to
the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e
i2πζνe−βν = r1(ζ)

1− e i2πζNe−βN

1− e i2πζe−β
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r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter related to
the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e
i2πζνe−βν

= r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β
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Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer
components

and assuming that material A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i
λr0ρAB
sin θ

∫ +ΓΛ/2

−ΓΛ/2
e i2πζz/Λdz

= −i
λr0ρAB
sin θ

Λ

i2πζ

[
e iπζΓ − e−iπζΓ

]
r1(ζ) = −2ir0ρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2ir0ρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γ through nA and a
fraction (1− Γ) through nB . The amplitude absorption coefficient, β is

β = 2

[
µA

2

ΓΛ

sin θ
+

µB

2

(1− Γ)Λ

sin θ

]
=

Λ

sin θ
[µAΓ + µB(1− Γ)]
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Reflectivity calculation
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Q (Å
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∆W/∆Si=10Å/40Å

10 bilayers
of W/Si

When ζ = QΛ/2π is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays

Multilayers are used commonly on labora-
tory sources as well as at synchrotrons as
mirrors
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Slab - multilayer comparison
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Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take ∆j as the thickness of each layer and nj = 1− δj + iβj as the index of refraction of each
layer

because of continuity, kxj = kx and therefore, we can compute the z-component of k⃗j

k2zj = (njk)
2 − k2x = (1− δj + iβj)

2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj =
√
Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer in the
jth layer
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Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the Nth layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the Nth layer, in-
cluding multiple reflections is now calculated (note
no prime!)

r ′j ,j+1 =
Qj − Qj+1

Qj + Qj+1

r ′N,∞ =
QN − Q∞
QN + Q∞

rN−1,N =
r ′N−1,N + r ′N,∞p2N
1 + r ′N−1,N r

′
N,∞p2N

The recursive relation can be seen from the calculation of reflectivity of the next layer up

rN−2,N−1 =
r ′N−2,N−1 + rN−1,Np

2
N−1

1 + r ′N−2,N−1rN−1,Np
2
N−1
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tom of the Nth layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the Nth layer, in-
cluding multiple reflections is now calculated (note
no prime!)

r ′j ,j+1 =
Qj − Qj+1

Qj + Qj+1

r ′N,∞ =
QN − Q∞
QN + Q∞

rN−1,N =
r ′N−1,N + r ′N,∞p2N
1 + r ′N−1,N r

′
N,∞p2N

The recursive relation can be seen from the calculation of reflectivity of the next layer up

rN−2,N−1 =
r ′N−2,N−1 + rN−1,Np

2
N−1

1 + r ′N−2,N−1rN−1,Np
2
N−1
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Kinematical - Parratt comparison

0 0.2

Q (Å
-1

)

10
-4

10
-2

10
0

R
M

ul
til

ay
er

Kinematical approximation gives a reason-
ably good approximation to the correct cal-
culation, with a few exceptions.

Parratt calculation gives RPar = 1 as Q → 0
while kinematical diverges (RKin → ∞).

Parratt peaks shifted to slightly higher val-
ues of Q

Peaks in kinematical calculation are some-
what higher reflectivity than true value.
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