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® Limiting cases of Fresnel equations

Reflection from a thin slab

Kiessig fringes

Multilayers in the kinematical regime

® Parratt's exact recursive calculation

Reading Assignment: Chapter 3.7-3.8

Homework Assignment #03: Homework Assignment #04:
Chapter 3: 1,3,4,6,8 Chapter 4: 2,4,6,7,10
due Monday, September 30, 2024 due Monday, October 14, 2024
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Starting with Snell's Law *=q'?+1-2ib,
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the reflected wave is in phase with the incident wave, almost total transmission
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when g < 1, ¢’ is mostly imaginary with mag- q°=¢q" —1+2ib,~ -1
nitude 1 since b, is very small
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Limiting cases - g < 1 <

Starting with Snell's Law again P=q%+1-— 2ib,,
2 2 o
when g < 1, ¢’ is mostly imaginary with mag- q°=q° —1+2ib, = 1
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Limiting cases - ¢ < 1
Starting with Snell’'s Law again
when g < 1, ¢’ is mostly imaginary with mag-

nitude 1 since b, is very small

thus the reflection and transmission coefficients
become
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Limiting cases - g < 1 S

Starting with Snell's Law again P=q%+1-— 2ib,,

2 2 o
when g < 1, ¢’ is mostly imaginary with mag- q°=¢q" —1+2ib,~ -1
nitude 1 since by, is very small q
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thus the reflection and transmission coefficients q+4q)
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Limiting cases - ¢ < 1 v}"

Starting with Snell's Law again P=q%+1-— 2ib,,
2 2 o
when g < 1, ¢’ is mostly imaginary with mag- q°=q° —1+2ib, = 1
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Limiting cases - ¢ < 1 V

Starting with Snell’'s Law again P=q%+1-— 2iby,
2 2 S
when g < 1, ¢’ is mostly imaginary with mag- q°=q° —1+2ib, = 1
nitude 1 since by, is very small q=~i
L a-d) -4 _
thus the reflection and transmission coefficients (g+4q) +q
2 2
become - q ~ 29 _ —2ig
g+q q
1
N —

[}

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.
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Limiting cases - g ~ 1 V
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Limiting cases - g ~ 1 V
P=q%+1-2ib,

q%=q* —1+2ib,

adding and subtracting b,,, q/2 ~ 2ib, = bu(l +2i-1)

Using Snell’s Law, with g ~ 1,
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Limiting cases - g ~ 1 V

*=q'%+1-2ib,
q%=q* —1+2ib,
adding and subtracting by, q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)

Using Snell’s Law, with g ~ 1,

q' is complex with real and imagi-
nary parts of equal magnitude.
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Limiting cases - g ~ 1

Using Snell’s Law, with g ~ 1,
adding and subtracting b,,,

q' is complex with real and imagi-
nary parts of equal magnitude.

Carlo Segre (lllinois Tech)

*=q'%+1-2ib,
q%=q* —1+2ib,
q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)

d ~ /bl +)
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Limiting cases - g ~ 1

Using Snell’s Law, with g ~ 1,
adding and subtracting b,,,

q' is complex with real and imagi-
nary parts of equal magnitude.

since /b, < 1, the reflection and
transmission coefficients become
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Limiting cases - g ~ 1 V

*=q'%+1-2ib,

Using Snell’s Law, with g ~ 1, ]
sing Snell's Law, with g q'2:q2—1+2’bu

adding and subtracting by, q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)
/ ~ .
q' is complex with real and imagi- q ~ bu(1+1)
nary parts of equal magnitude. _ (g—q)
(g+4q)

since /b, < 1, the reflection and
transmission coefficients become
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Using Snell’s Law, with g ~ 1,
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q' is complex with real and imagi-
nary parts of equal magnitude.

since /b, < 1, the reflection and
transmission coefficients become
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Limiting cases - g ~ 1

Using Snell’s Law, with g ~ 1,
adding and subtracting b,,,

q' is complex with real and imagi-
nary parts of equal magnitude.

since /b, < 1, the reflection and
transmission coefficients become

Carlo Segre (lllinois Tech)

*=q'%+1-2ib,
q%=q* —1+2ib,

q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)

d ~ /bl +)

o

r= (q q/)%ﬂ%].
(g+d) g

29 2
at+4q q
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Limiting cases - g ~ 1 N

*=q'%+1-2ib,

Using Snell’s Law, with g ~ 1, ]
sing Snell's Law, with g q'2:q2—1+2’bu

adding and subtracting by, q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)
/N .
q' is complex with real and imagi- q ~ bu(1+1)
nary parts of equal magnitude. _ (g—q) 9.,
(a+9d) g«
2 2
t= d i 9 _ 2
a+gq q

since /b, < 1, the reflection and
transmission coefficients become
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Limiting cases - g ~ 1 N

*=q'%+1-2ib,

Using Snell’s Law, with g ~ 1, ]
sing Snell's Law, with g q'2:q2—1+2’bu

adding and subtracting by, q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)
/ ~ .
q' is complex with real and imagi- q ~/bu(1+1)
nary parts of equal magnitude. _ (q—q) a_,
(a+9d) g«
2 2
t= p +qq, = ;q =2
since /b, < 1, the reflection and 1 1
transmission coefficients become A~ ~
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Limiting cases - g ~ 1

Using Snell’s Law, with g ~ 1,
adding and subtracting b,,,

q' is complex with real and imagi-
nary parts of equal magnitude.

since /b, < 1, the reflection and
transmission coefficients become

*=q'%+1-2ib,
q%=q* —1+2ib,
q'? = 2ib, = b, (1 +2i — 1) = b,(1 + i)

d ~ /bl +)

_ /
P q/) 9.
(g+d) g
2 2
t= q/%—q—2
9+q q
1 1
AN ~

The reflected wave is in phase with the incident, there is significant (larger amplitude than the
reflection) transmission with a large penetration depth.
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Review of interface effects i

We have covered the interface boundary conditions which govern the transmission and
reflection of waves at a change in medium.
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Review of interface effects i

We have covered the interface boundary conditions which govern the transmission and
reflection of waves at a change in medium.

Ny

n,
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Review of interface effects

A\

We have covered the interface boundary conditions which govern the transmission and

reflection of waves at a change in medium. These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

Ny

n,
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Review of interface effects

We have covered the interface boundary conditions which govern the transmission and
reflection of waves at a change in medium. These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.
n
0 Q-«

n, ot
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Review of interface effects

A\

We have covered the interface boundary conditions which govern the transmission and

reflection of waves at a change in medium. These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

nO B Qin
n, T+ @
t= 72(?
O+ @
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Review of interface effects

We have covered the interface boundary conditions which govern the transmission and

reflection of waves at a change in medium. These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

nO B Qin
n, T+ @
t= 72(?
O+ @

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to
absorption.
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Review of interface effects \

We have covered the interface boundary conditions which govern the transmission and

reflection of waves at a change in medium. These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

nO B Qin
n, T+ @
t= 72(?
O+ @

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to
absorption. We now consider what happens if there is a second interface encountered by the

transmitted wave before it dies away. That is, a thin slab of material on top of an infinite
substrate
Carlo Segre (lllinois Tech)
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Reflection and transmission coefficients A\

For a slab of thickness A on a substrate, the transmission and reflection coefficients at each
interface are labeled:
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Reflection and transmission coefficients \ i

For a slab of thickness A on a substrate, the transmission and reflection coefficients at each
interface are labeled:

ro1 — reflection in ng off ny
to1 — transmission from ng into ny
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Reflection and transmission coefficients \ i

For a slab of thickness A on a substrate, the transmission and reflection coefficients at each
interface are labeled:

ro1 — reflection in ng off ny
to1 — transmission from ng into ny

rio — reflection in ny off no
n, t12 ti2> — transmission from n; into ny
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Reflection and transmission coefficients \ i

For a slab of thickness A on a substrate, the transmission and reflection coefficients at each
interface are labeled:

ro1 — reflection in ng off ny

t10 to1 — transmission from ng into ny

n, A

lo ri> — reflection in ny off no

ti2> — transmission from n; into ny

rip — reflection in ny off ng
tig0 — transmission from ny into ng
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Reflection and transmission coefficients \ i

For a slab of thickness A on a substrate, the transmission and reflection coefficients at each
interface are labeled:

ro1 — reflection in ng off ny

t10 to1 — transmission from ng into ny

n, A

lo ri> — reflection in ny off no

ti2> — transmission from n; into ny

rip — reflection in ny off ng
tig0 — transmission from ny into ng

Build the composite reflection coefficient from all possible events
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Overall reflection from a slab V'

The composite reflection coefficient for each ray emerging from the top surface is computed
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Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

Ny \/ fo1

n, A
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Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

Ny ro1
+
n
1 IA to1ri2tio
n,
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Overall reflection from a slab A

The composite reflection coefficient for each ray emerging from the top surface is computed

no 1
n, 1A N
to1ri2tio
n, +
torri2roratio
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Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

no 1
n, 1A +
to1ri2tio
n, +
torri2roratio

Inside the medium, the x-rays are travelling an additional 2A per traversal. This adds a phase
shift of

p2 — ei2(k1 sin al)A

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 8/21



Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

no 1
n, 1A +
to1ri2tio
n, +
torri2roratio

Inside the medium, the x-rays are travelling an additional 2A per traversal. This adds a phase
shift of

p2 — ei2(k1 sin al)A — einA
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Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

no 1
+
N IA 2
torriotio - p
n, +
torri2roratio

Inside the medium, the x-rays are travelling an additional 2A per traversal. This adds a phase
shift of
p2 — ei2(k1 sin al)A — einA

which multiplies the reflection coefficient
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Overall reflection from a slab \ i

The composite reflection coefficient for each ray emerging from the top surface is computed

Ny ro1
_l’_
n
1 IA torri2tio - P2
n, +

4
toir2ronatio - p

Inside the medium, the x-rays are travelling an additional 2A per traversal. This adds a phase
shift of
p2 — ei2(k1 sin al)A — einA

which multiplies the reflection coefficient with each pass through the slab
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Composite reflection coefficient V

The composite reflection coefficient can now be expressed as a sum
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Composite reflection coefficient V

The composite reflection coefficient can now be expressed as a sum

2 2 4 2 3 6
Islab = ro1 + torri2tiop” + torroratiop” + forriprintiop + - --
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Composite reflection coefficient i3

The composite reflection coefficient can now be expressed as a sum
_ 2 2 4 2 3 6
Islab = fo1 + to1ri2tiop” + torroriatiop” + toirigriatiop” + - -

factoring out the second term from
all the rest
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Composite reflection coefficient i3
The composite reflection coefficient can now be expressed as a sum
Fsiab = fo1 + torri2tiop” + torroriatiop® + t01f120f132 tiop® + - -

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
all the rest

m=0
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Composite reflection coefficient i

The composite reflection coefficient can now be expressed as a sum
_ 2 2 4 2 3 6
Islab = fo1 + to1ri2tiop” + torroriatiop” + toirigriatiop” + - -

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
all the rest

m=0
summing the geometric series as
previously
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Composite reflection coefficient i

The composite reflection coefficient can now be expressed as a sum
_ 2 2 4 2 3 6
Islab = fo1 + to1ri2tiop” + torroriatiop” + toirigriatiop” + - -

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
— all the rest

1 summing the geometric series as

2
= fo1 + to1tior2p 5 .
1—ronap previously
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Composite reflection coefficient \ i
The composite reflection coefficient can now be expressed as a sum
Fsiab = fo1 + torri2tiop” + torroriatiop® + t01f120f132 tiop® + - -

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
— all the rest

1 summing the geometric series as

2
= fo1 + to1tior2p 5 .
1—ronap previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall
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Composite reflection coefficient A\

The composite reflection coefficient can now be expressed as a sum

2 2 4 2 3 6
Islab = ro1 + torri2tiop” + torroratiop” + forriprintiop + - --

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
— all the rest

1 summing the geometric series as

2
= fo1 + to1tior2p 5 .
1—ronap previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

_e-«
Q+ @
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Composite reflection coefficient A\

The composite reflection coefficient can now be expressed as a sum

2 2 4 2 3 6
Islab = ro1 + torri2tiop” + torroratiop” + forriprintiop + - --

factoring out the second term from

o0
2
Islab = ro1 + to1tioriop E f10f12P
— all the rest

1 summing the geometric series as

2
= fo1 + to1tior2p 5 .
1—ronap previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

Q- 2@
O+ Q” R+
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Fresnel equation identity vV

Applying the Fresnel equations to the top interface
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Fresnel equation identity

Applying the Fresnel equations to the top interface

Q-G
t01 IA o1 = QO + Ql
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Fresnel equation identity vV

Applying the Fresnel equations to the top interface

Q-G . 2Qo
to1 IA T @ for = Qo + G1
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Fresnel equation identity

Applying the Fresnel equations to the top interface

Ny

N o IA r01:QO_Q1

1 r Qo + Q1
10

o = Q1 — Qo

Q1+ Qo
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Fresnel equation identity

Applying the Fresnel equations to the top interface

"o tio
n,
l0

Carlo Segre (lllinois Tech)

o Qo — Q1
N Qo+ &
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Fresnel equation identity i

Applying the Fresnel equations to the top interface

tio
Q-G . 2Qo
N o IA T+ @ for = Qo + Q1
ro = @ — Go = —rn1 tip = 27621
Q1+ Qo Q1+ Qo

we can, therefore, construct the following identity

2
ot + to1t1o
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Fresnel equation identity

Applying the Fresnel equations to the top interface

Ny

t
N 10 A . _ Q-
1 o I T Qo+ @
Q1 — Qo

we can, therefore, construct the following identity

(Q— Q1)° n 2Qo 2@,
(Q+ Q) Q-+ & &+ Q

2
ot + to1t1g =
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Fresnel equation identity

Applying the Fresnel equations to the top interface

Ny

Lo
Q-G . 2Qo
N o IA T+ @ for = Qo + Q1
o= =R _ fo = 2
Q1+ Qo Q1+ Qo

we can, therefore, construct the following identity

(Q— Q1)? n 2Qo 2 _ Q3 —2Q0@1 + Q2 +4Qu @y
(Q+Q)P? Q+@&Q&+Q (Qo + Q1)

2
ot + to1t1g =
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Fresnel equation identity

Applying the Fresnel equations to the top interface

Ny i

. . o= 21 o= 20

1 o I T Qo+ @ T Qo+ @
poo Q1= o= 21
YT+ Q o YT+ Q

we can, therefore, construct the following identity
(Q— Q1)? n 2Qo 2 _ Q3 —2Q0@1 + Q2 +4Qu @y
(Qo+Q)° Qo+ QQ+Q (Qo+ @)
_ Q% +2QoQ1 + Q7
(Qo+ Q1)
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Fresnel equation identity

Applying the Fresnel equations to the top interface

10
Q-
ny » IA N
Q1 — Qo

we can, therefore, construct the following identity

L 2

Qo + Q1
b 2@
Q0+ Qo

(Q— Q1)? n 2Qo 2 Q3 —2Q0@1 + Q2 +4Qu @y

2
ot + to1t1g =

(Q+ Q) Q+@Q+Q

_ @ 2Q@i+ @ (Q+ Q)
(Qo + Q1)? (Qo+ Q1)?

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024

September 16, 2024

(Qo + Q1)?

10/21



Reflection coefficient of a slab 7

Starting with the reflection coefficient of the slab obtained earlier
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Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

1

2
Fslab = fo1 + to1tior2p” -—————>
1—rioriop
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Reflection coefficient of a slab 7

Starting with the reflection coefficient of the slab obtained earlier

1 Using the identity

2
Fslab = fo1 + to1tior2p” -—————>
1—rioriop

2
to1tio = 1-— o
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Reflection coefficient of a slab 7

Starting with the reflection coefficient of the slab obtained earlier

2 Using the identit
Fsiab = fo1 + to1tiori2p 5 ng ! "
1 —rior2p tortio = 1 — 2,
1
2 2
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Reflection coefficient of a slab i

Starting with the reflection coefficient of the slab obtained earlier

1 . . .
2 Using the identit
Isiab = fo1 + to1tior2p 5 & ¥
1= rnonzp tortio =1—rgy
1
— r01+ (1—r021) r12p241_ 2 i i
roriz2p Expanding over a common denomina-

tor and recalling that rig = —rp1.
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Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

1
2
I'slab = ro1 + toitiori2p W
—n
2 2 1
=ro1 + (1 — f01) rp m

o1+ rgyrep® + (1— 1) rzp?
1 — rigriop?

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024
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Expanding over a common denomina-
tor and recalling that rig = —rp1.
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Reflection coefficient of a slab i

Starting with the reflection coefficient of the slab obtained earlier

1 Using the identity

2
Fslab = fo1 + to1tior2p” -—————>
1—rioriop

2
to1tio = 1-— o

1
2 2
=fo1+(1—r01)r12P1_rr 5 ) _
10112P Expanding over a common denomina-
tor and recalling that rig = —rp1.
_fo1 + r021f12P2 + (1 — rgl) r12p2
1 — rigr2p?
2
ro1 + rap

sl —_——
0T 1 4 o1 2p?
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Reflection coefficient of a slab i

Starting with the reflection coefficient of the slab obtained earlier

1 Using the identity

2
Fslab = fo1 + to1tior2p” -—————>
1—rioriop

2
to1tio = 1-— o

1
2 2
=ror+ (1 r61) n2p’y— —— . |
10112P Expanding over a common denomina-
tor and recalling that rig = —rp1.
o+ ré rnap® + (1 — r&l) rap?
1 — ror2p?
fo1 + rap> In the case of ng = ny there is the

Islab further simplification of ri» = —ro1.

1+ ro1riop?
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Reflection coefficient of a slab i

Starting with the reflection coefficient of the slab obtained earlier

2 Using the identit
Islab = fo1 + to1tioriop m & y ,
tortio =1 —rgy
1
2 2
=ro1 + (1 —rg;) rnop 1= rron? ) _
10112P Expanding over a common denomina-
tor and recalling that rig = —rp1.
_fo1 + r021f12P2 + (1 - rgl) riop?
1— rionap?
s — ro1 + rop?  ro1 (1-p?) ]Icn the case C-)ff- no = 1}2 there is the
sla 1+ ro1riap? 1_ rozlpg urther simplification of rip = —rp;1.
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Kiessig fringes

p? — el

ro1 (1 — p?)

Islab = >
1-rap?
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Kiessig fringes
p? = A
ro1 (1 — p?)

Islab = >
1-rap?

If we plot the reflectivity

Rsiab = |"slab|2
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Kiessig fringes

p? — el

ro1 (1 — p?)

Islab = >
1-rap?

If we plot the reflectivity

Rsiab = |"slab‘2

RSIab
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Kiessig fringes

p? — el

P (1-p?)
slab 1_ r021p2
If we plot the reflectivity

Rsiab = |"slab‘2

These are the so=-called Kiessig fringes
which arise from interference between re-
flections at the top and bottom of the slab.
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Kiessig fringes

p? — el

ro1 (1 — p?)

Islab = >
1-rap?

If we plot the reflectivity

Rsiab = |"slab‘2

These are the so=-called Kiessig fringes
which arise from interference between re-
flections at the top and bottom of the slab.
They have an oscillation frequency

27 /A = 0.092A"

Carlo Segre (lllinois Tech)
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Kinematical reflection from a thin slab A

Recall the reflection coefficient for a thin slab.

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 13/21



Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

ro1 (1= p?)

Fsiab = 2 o
1—rop
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Kinematical reflection from a thin slab A\

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle

ro1 (1= p?)

Fsiab = 2 o
1—rop
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle

g>1

ro1 (1 — p?)

Fsiab = 2 o
1—roup
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the

critical angle

g>1
\r01|<<1 o > Q¢
, ro1 (1 — p?)
lab= ———5 5
> 1_r021P2

Carlo Segre (lllinois Tech)

PHYS 570 - Fall 2024
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the

critical angle

g>1
\r01|<<1 o > Q¢
ro1 (1 — p?
I'slab = ].51’22) X 1 (]. — p2)
01

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024

September 16, 2024

A\

13/21



Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1
\r01|<<1 o > Q¢

ro1 (1 — p?)
Islab = ———5—5
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1
‘r01| <1 a > Q¢
1 ].—p2 .
I'slab = M ~ 1 (1 —p ) ~ <1 — e'QA)
01
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 _Go—q1
101

lro1] < 1 a > o @t

ro1 (1= p?)

I'slab = 2 o
1—rop

~ 1 (1 — p2) ~ 1 (1 — eiQA)
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 _9o—q19+q1
= _—————-

lro1] < 1 a > ac C q+aiq+a

ro1 (1= p?)

I'slab = 2 o
1—rop

~ 1 (1 — p2) ~ 1 (1 — eiQA)
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 rOI_qo—qlqo+Q1: % — gt

lro1] < 1 a > o Gt aqiqo+aqi (go + q1)?

ro1 (1= p?)

I'slab = 2 o
1—rop

~ 1 (1 — p2) ~ 1 (1 — eiQA)
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 oo B aGta  g-a 1
lro1] < 1 a > ac o+adot+a  (qgp+aq)  (29)°

ro1 (1 — p?)

I'slab = 2 o
1—roup

~ 1 (1 — p2) ~ (1 — eiQA)
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 -GGt a _ @-d 1 :<Qc>2
Iror| < 1 a> ae QOt+ado+a  (gp+aq)  (290)° \2Q
r01(1_P2) 2 QA
Fslab = ———F=——5— ~ Ip1 ].—p R:r()l(l—e )
sla e ( )
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 -GGt a _ @-d 1 :<Qc>2
lro1] < 1 a > o go+agp+a  (qp+aq) (2q9) 2Qo
ro1 (1 - p?) 2 QA QY QA
rslab:W~r01(l—p) Nf()]_(l—el ) ~ TQO (1—el )
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 -GGt a _ @-d 1 :<Qc>2
lro1] < 1 a > o go+agp+a  (qp+aq) (2q9) 2Qo
ro1 (1 - p?) 2 QA QY QA
rslab:W~r01(l—p) Nf()]_(l—el ) ~ TQO (1—el )

_ _1ompno iga2 (ef0r2 — ¢ianr2)
4Q?
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 o= B nGta  g-a 1 :<QC>2
[ro1| <1 a > ac G+aqig+a  (go+q) (29)° 2Qo
fo1 (1 — P2) 2 iQA Qc > QA
rslab:]WNr01(1—P)~r01<1—e )~ TQO (l—e )
_ 167pry /@D /2 <eiQA/2 _ efoA/z) _ dtprA Si”(QA/z)eiQA/z
4Q? Q QA/2
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 o= B nGta  g-a 1 :<QC>2
[ro1| <1 a > ac G+aqig+a  (go+q) (29)° 2Qo
fo1 (1 — P2) 2 iQA Qc > QA
rslab:]WNr01(1—P)~r01<1—e )~ TQO (l—e )
_ 167pry /@D /2 <eiQA/2 _ efoA/z) _ dtprA Si”(QA/z)eiQA/z
4Q? Q QA/2

Since QA < 1 for a thin slab
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 -GGt a _ @-d 1 :<Qc)2
lro1] < 1 a > o go+agp+a  (qp+aq) (2q9) 2Qo
ro1 (1 - p?) 2 QA QY QA
rslab:W~r01(l—p) Nf()]_(l—el ) ~ TQO (1—el )

_ _L6mpro igns2 (eiQA/z_efiQA/2> _ AmproA '\ sin QM
4Q2 Q ) QA2

Since QA < 1 for a thin slab
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 -GGt a _ @-d 1 :<Qc)2
1| < 1 a > e go+agp+a  (qp+aq) (2q9) 2Qo
r01(1—p2) 2 iQA Qc ° iQA
=\ T/ 1-— ~~ (1—’(‘))% — (1—’0)
I'slab 1_ ro21P2 n1 ( P ) 1 e 2Q0 €
_ _L6mpro igns2 (eiQA/z_efiQA/2> _ AmproA '\ sin QM
4Q2 Q ) QA2
_)\proA
~ = I'thin slab
SIn &

Since QA < 1 for a thin slab
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A\

Multilayers in the kinematical regime

0 0
/\‘/ N repetitions of a bilayer of thickness A composed of
1 IA two materials, A and B which have a density contrast
2 (pa > pB).
3
N
September 16, 2024 14 /21
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Multilayers in the kinematical regime \ 74

0710

N repetitions of a bilayer of thickness A composed of

1 IA two materials, A and B which have a density contrast
2 (pa > pB).

:_)’ r1 is the reflectivity of a single bilayer

N
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Multilayers in the kinematical regime \ 74

0710

N repetitions of a bilayer of thickness A composed of

1 IA two materials, A and B which have a density contrast
2 (pa > pB).

r1 is the reflectivity of a single bilayer

[ is the average absorption per bilayer
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Multilayers in the kinematical regime

6710

Carlo Segre (lllinois Tech)

A

N repetitions of a bilayer of thickness A composed of
two materials, A and B which have a density contrast

(pa > pB).
r1 is the reflectivity of a single bilayer
[ is the average absorption per bilayer

¢ = QA/2r is a dimensionless parameter related to
the phase shift of a single bilayer
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Multilayers in the kinematical regime

6710

1 A

N

Form a stack of N bilayers

Carlo Segre (lllinois Tech)

N repetitions of a bilayer of thickness A composed of
two materials, A and B which have a density contrast

(pa > pB).
r1 is the reflectivity of a single bilayer
[ is the average absorption per bilayer

¢ = QA/2r is a dimensionless parameter related to
the phase shift of a single bilayer
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Multilayers in the kinematical regime \ i

6710

N repetitions of a bilayer of thickness A composed of

1 IA two materials, A and B which have a density contrast
2 (pa > pB).
:_)’ r1 is the reflectivity of a single bilayer

[ is the average absorption per bilayer
. ¢ = QA/2m is a dimensionless parameter related to
N the phase shift of a single bilayer

Form a stack of N bilayers

1— ei27rCNe—,BN

m(¢) = Z r(¢)e?™ e = r(¢) 1_ 2 Ca-B
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Reflectivity of a bilayer

A\

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab

but replacing the density of the slab material with the difference in densities of the bilayer
components
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Reflectivity of a bilayer

A\

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab

but replacing the density of the slab material with the difference in densities of the bilayer
components

P — PAB=PA—PB

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 15/21



Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer
components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

_ Aropag [TTM?
n(C) =~ sin 6

0i27Cz/A 4y
—TA/2

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 15/21
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Reflectivity of a bilayer

\
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

Y +IA/2 .
I’1(C) — —j r(.)pAB elQWCZ//\dZ
sinf —TA/2
= _;ML

in¢l —iwgr]
sinf i2mC [e €
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Reflectivity of a bilayer

\
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

A\ HTA2
rn(¢) = —i r(.)pAB e/ dz
sind —TA/2 eX — e=X = Djsinx
_ _jAropas A

in¢l —iwgr]
sinf i2mC [e €

Q =4nsinf/\ =27(/N
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Reflectivity of a bilayer V
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

A\ HTA2
rn(¢) = —i r(.)pAB e/ dz
sind —TA/2 eX — e=X = 2jsinx
_ _jAropas A

[eiwgr _ e—iwgr]

sinf i2n¢ Q =4msinf/\ =2n(/N\
) .
r(¢) = —2irpas (/\CF> Sln7§7rrCrC)
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Absorption coefficient of a bilayer \4

The total reflectivity for the multilayer is therefore:

_ AT\ sin (7¢) 1 — e?mCNe=BN
= ~2irpas e ¢ 1—e2mCe=P
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Absorption coefficient of a bilayer i

The total reflectivity for the multilayer is therefore:

/\2r> sin (7T¢) 1 — 2N e=BN

v = —2opas (C T T

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng.
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

/\2r> sin (7T¢) 1 — 2N e=BN

v = —2opas (C T T

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng. The amplitude absorption coefficient, 3 is
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<

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

_ AT\ sin (7¢) 1 — e?mCNe=BN
= ~2irpas e ¢ 1—e2mCe=P

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng. The amplitude absorption coefficient, 3 is

5=2 pa TN pg (1 —T)A
2 sinf 2 sind
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<

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

/\2r> sin (7T¢) 1 — 2N e=BN

v = —2opas (C T T

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng. The amplitude absorption coefficient, 3 is

ﬂ:2[HA A ,uB(l—I_)/\]_ A

2 sinf 2 sind ~ sinf [eal + g (1 = T)]

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 16 /21



Reflectivity calculation

1 ' T
10 bilayers

- of W/Si

Ay/Ag=10A/40A

RMultilayer

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 17 /21



Reflectivity calculation

FahAuHHayer

1 T

I
10 bilayers
of W/Si

W Si

Ay /A.=10A/40A

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have

peaks
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A\

Reflectivity calculation

10° T T
When ¢ = QA/27 is an integer, we have
peaks
o 102k ] As N becomes larger, these peaks would be-
§ ﬂ come more prominent
g ﬂ
10* 10 bilayers i
of W/Si =
AW/ASi=1IOA/4OA |
0 0.2
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Reflectivity calculation

10 T T
5 102 ﬁ i

g ﬂ
o ﬂﬂ
10* 10 bilayers i

of W/Si .
AW/ASi=1IOA/4OA |
0 0.2
QA"

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays
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Reflectivity calculation

10 T T

5 102 ﬁ i
é ﬂ
o ﬂﬂ
10* 10 bilayers i
of W/Si .
AW/ASi=1IOA/4OA |
0 0.2
QA"

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays

Multilayers are used commonly on labora-
tory sources as well as at synchrotrons as
mirrors

PHYS 570 - Fall 2024 September 16, 2024

17/21



Slab - multilayer comparison

W~—T T T 71— 10° ' '
A=68 A
5 102 -
S0 - & (\
n 3
o =
o mp
10*~ 10 bilayers B
. of W/Si .
10 L | AW/ASi=1IOA/4OA |
0 02 04 06 08 1 0 0.2
Q(A™ QA"
PHYS 570 - Fall 2024 September 16, 2024
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Parratt’s recursive method A

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.
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Parratt’s recursive method

A\

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J
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Parratt’s recursive method \

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2 = (njk)? — k2

zj X

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 19/21



Parratt’s recursive method \

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
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Parratt’s recursive method \

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

and the wavevector transfer in the
jth layer
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

Qj = 2kJ sin aj = 2kzj
and the wavevector transfer in the
jth layer
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Parratt’s recursive method 7

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

Q) = 2kjsina; = 2ky; = \/ Q2 — BK2; + 8ik25;

and the wavevector transfer in the
jth layer
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Parratt reflectivity calculation \ 7

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is
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Parratt reflectivity calculation v}"

The reflectivity from the interface between layer j . Q — Qi1
. . . . . . r: - = -
and j + 1, not including multiple reflections is JJ+1 Q + Qi1

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 20/21



Parratt reflectivity calculation V

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

rj{,j+1 — Q— Qi
Qi + Qj+1

Now start calculating the reflectivity from the bot-

tom of the N layer, closest to the substrate,

where multiple reflections are not present

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024 September 16, 2024 20/21



Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the N layer, closest to the substrate,
where multiple reflections are not present

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024

g _Q-Qn
WA Qi+ Qi

r/ QN - QOO
N:oo QN + Qoo

September 16, 2024 20/21



Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the N layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the N/ layer, in-
cluding multiple reflections is now calculated (note
no prime!)

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2024
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r.. 1_7
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r/ QN - QOO
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Parratt reflectivity calculation v

The reflectivity from the interface between layer j . Q — Q11

and j + 1, not including multiple reflections is = Qi+ Qi1

Now start calculating the reflectivity from the bot-

tom of the N layer, closest to the substrate, oo = M

where multiple reflections are not present 7 Qn + Qoo

The reflectivity from the top of the N/ layer, in- . B oy T r//\/,oopl2v

cluding multiple reflections is now calculated (note N—1,N = / / 2
8 P ( L+ ry g v ooPh

no prime!)
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Parratt reflectivity calculation v

The reflectivity from the interface between layer j . Q — Q11
and j + 1, not including multiple reflections is J+ Qi + Qi1
Now start calculating the reflectivity from the bot-

tom of the N layer, closest to the substrate, N oo = M
where multiple reflections are not present 7 Qn + Qoo

The reflectivity from the top of the N/ layer, in-
cluding multiple reflections is now calculated (note 'N-1,N
no prime!)

/ / 2
'N—1,N T "N,0oPN
/ / 2

L+ ry g v ooPh

The recursive relation can be seen from the calculation of reflectivity of the next layer up

/ 2
'N—2N—1 T IN-1,NPN_1

rN—2,N—1 = / 5
L+ ry_on-1"N-1,NPN_1
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Kinematical - Parratt comparison
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Kinematical - Parratt comparison

Kinematical approximation gives a reason-
1 ably good approximation to the correct cal-
culation, with a few exceptions.

[}
5 10°
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o
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1 I
0 0.2
2 1
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Kinematical - Parratt comparison

Kinematical approximation gives a reason-
1 ably good approximation to the correct cal-
culation, with a few exceptions.

o
5 10° Parratt calculation gives Rp,, = 1as @ — 0
'Ig while kinematical diverges (R, — 00).
102 .
10" 1
1 I
0 0.2
: -1
Q(A)
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Kinematical - Parratt comparison A

Kinematical approximation gives a reason-
- 1 ably good approximation to the correct cal-
culation, with a few exceptions.

é 10° Parratt calculation gives Rp,, = 1as @ — 0
E while kinematical diverges (R, — 00).
o
10~ N Parratt peaks shifted to slightly higher val-
ues of @
10* - 1
. !
0 02
QA"
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Kinematical - Parratt comparison 7

RMultilayer

1

Carlo Segre (lllinois Tech)

Kinematical approximation gives a reason-
ably good approximation to the correct cal-
culation, with a few exceptions.

Parratt calculation gives Rp,, = 1as @ — 0
while kinematical diverges (R, — 00).

Parratt peaks shifted to slightly higher val-
ues of @

Peaks in kinematical calculation are some-
what higher reflectivity than true value.

PHYS 570 - Fall 2024 September 16, 2024 21/21



	Preamble
	Today's outline - September 16, 2024

	Fresnel Equations
	Fresnel equation review
	Limiting cases - q1
	Limiting cases - q1
	Limiting cases - q1

	Reflection from a Thin Slab
	Review of interface effects
	Reflection and transmission coefficients
	Overall reflection from a slab
	Composite reflection coefficient
	Fresnel equation identity
	Reflection coefficient of a slab
	Kiessig fringes

	Reflection from Multilayers
	Kinematical reflection from a thin slab
	Multilayers in the kinematical regime
	Reflectivity of a bilayer
	Absorption coefficient of a bilayer
	Reflectivity calculation
	Slab - multilayer comparison

	Parratt's Method
	Parratt's recursive method
	Parratt reflectivity calculation
	Kinematical - Parratt comparison


