
Today’s outline - September 11, 2024

• Refraction & reflection introduction

• Boundary conditions at an interface

• The Fresnel equations

• Reflectivity and Transmittivity

• Normalized q-coordinates

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02:
Problems on September
due Monday, September 16, 2024

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Monday, September 30, 2024
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Refraction & reflection of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light,
the index of refraction of x-rays in matter is very close to unity:

α

α’

n = 1− δ + iβ, with δ ∼ 10−5

Snell’s Law: cosα = n cosα′

where α′ < α unlike for visible light

Because n < 1, at a critical angle αc , we no longer have refraction but

total external reflection

α α

Since α′ = 0 when α = αc

n = cosαc −→ n ≈ 1− α2
c

2
= 1− δ + iβ

δ =
α2
c

2
−→ αc =

√
2δ
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Uses of total external reflection

X-ray mirrors

• harmonic rejection

• focusing & collimation

Evanscent wave experiments

• studies of surfaces

• depth profiling
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Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction ac-
cording to Snell’s Law which depends on the index of refraction of the two media.

For visible light, the index of refraction of a transparent medium is always greater
than unity and this is exploited to create lenses and optical devices.

For x-rays, there is also an index of refraction but it is always slightly less than
unity, resulting in phenomena which can be used to create x-ray optics and a host
of experimental techniques.

The refraction and reflection of x-rays derive fundamentally from the scattering
of x-rays by electrons and the fact that the scattering factor is negative, −r0.

Initially assume that all interfaces are perfectly flat and ignore all absorption pro-
cesses.
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Thin plate response - scattering approach

Consider a thin plate of thickness ∆ onto which x-rays are incident from a point source S a
perpendicular distance R0 away.

A detector is placed at P, also a perpendicular distance R0 on
the other side of the plate. We consider a small volume at location (x , y) which scatters the
x-rays.

S P

∆

R0 R0

x

The plate has electron density ρ and the vol-
ume ∆dxdy contains ρ∆dxdy electrons which
scatter the x-rays. The distance from S to the
scattering volume is

R =
√
R2
0 + x2 + y2

R = R0

√
1 +

x2 + y2

R2
0

≈ R0

[
1 +

x2 + y2

2R2
0

]
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Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels
from S → P through the scattering volume will have an extra phase shift

S P

∆

R0 R0

x

R

ϕ(x , y) = 2k
x2+y2

2R2
0

=
x2+y2

R2
0

k

compared to a wave which travels directly
along the z-axis. The wave which is scattered
through the volume will have the form

dψP
S ≈

(
e ikR0

R0

)
(ρ∆dxdy)

(
−b

e ikR0

R0

)
e iϕ(x ,y)
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Thin plate response - scattering approach

dψP
S =

(
e ikR0

R0

)
ρ(∆dxdy)

(
−b

e ikR0

R0

)
e iϕ(x ,y)

ψP
S =

∫
dψP

S = −ρb∆e i2kR0

R2
0

∫ ∞

−∞
e
i x

2+y2

R2
0

k
dxdy

= −ρb∆e i2kR0

R2
0

(
i
πR0

k

)

Integrate the scattered wave over the
entire plate. This integral is basically
a Gaussian integral squared with an
imaginary (instead of real) constant
in the exponent and it gives∫ ∞

−∞
e
i x

2+y2

R2
0

k
dxdy = i

πR0

k

Thus the total wave (electric field) at P can be written

ψP = ψP
0 + ψP

S =
e i2kR0

2R0
− iρb∆

πR0

k

e i2kR0

R2
0

= ψP
0

[
1− i

2πρb∆

k

]
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Thin plate response - refraction approach

Now let’s look at this phenomenon from a different point of view, that of refraction.

Assume
that the wave passing through the plate simply gains a phase shift because it passes through a
medium compared to a wave which does not have the plate present.

S P

∆

R0 R0

x

ψP

0

The phase shift depends on the thickness and
the difference between the index of refraction
of the medium and that of vacuum

ϕ = 2π

(
n∆

λ
− ∆

λ

)
=

2π

λ
∆(n − 1) = k∆(n − 1)

The wave function at P is then:

ψP = ψP
0 e

i(n−1)k∆ = ψP
0 [1 + i(n − 1)k∆+ · · · ] ≈ ψP

0 [1 + i(n − 1)k∆]
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ψP = ψP
0 e

i(n−1)k∆ = ψP
0 [1 + i(n − 1)k∆+ · · · ] ≈ ψP

0 [1 + i(n − 1)k∆]
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Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ
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Index of refraction & critical angle

Consider an x-ray incident on an interface at angle α1 to
the surface

which is refracted into the medium of index
n2 at angle α2.

Applying Snell’s Law, and assuming that the incident
medium is “vacuum” (n1 = 1).

If we now apply the known form of the index of refraction
for the medium (n2 = 1− δ).

When the incident angle becomes small enough, there
will be total external reflection and cosα2 ≡ 1

α

x

z

1
n1

2n

n2 cosα2 = n1 cosα1 = cosα1

(1− δ) cosα2 = cosα1

1− δ = cosαc

1− δ = cosαc

= 1− αc
2

2
+ · · · ≈ 1− αc

2

2
−→ δ ≈ αc

2

2
−→ αc =

√
2δ

If δ ∼ 10−5 αc =
√
2× 10−5 = 4.5× 10−3 = 4.5 mrad = 0.26◦
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that
this is not correct, and that usually electron charge distributions are those of the atoms
making up the solid.

Therefore, it is useful to replace the uniform charge distribution, ρ, with
a more realistic one, including the atom distribution ρa:

ψP = ψP
0

[
1− i

2πρb∆

k

]

ρ = ρaf
0(θ = 90◦) k = 2π/λ

ψP = ψP
0

[
1− i

λρaf
0r0∆

sin θ

]

ψP = ψP
0 [1− ig0] ≈ ψP

0 e
−ig0

This holds for forward scattering (θ = 90◦ or ψ =
0◦) only, and a correction term of sin θ is needed
if the viewing angle is different.

The second term is the first order term in the ex-
pansion of a complex exponential and thus is noth-
ing more than a phase shift to the electromagnetic
wave.
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Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 12 / 19



Absorption term in n

The absorptive term in the index of refraction is directly related to the f ′′ term in the atomic
scattering factor:

n = 1− 2πρar0
k2

[
f 0(Q) + f ′ + if ′′

]
= 1− 2πρar0

k2
[
f 0(Q) + f ′

]
− i

2πρar0
k2

f ′′ = 1− δ + iβ

Since f 0(0) ≫ f ′ in the forward direction,
we have

In terms of the absorption coefficient, µ, and
the atomic cross-section, σa

δ ≈ 2πρaf
0(0)r0

k2

β = −2πρaf
′′r0

k2
=

µ

2k

f ′′ = − k2

2πρar0

µ

2k
= − k

4πr0
σa
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Electromagnetic boundary conditions

Maxwell’s equations require that an electromagnetic wave and its derivative be continuous in
all directions at any interface. This condition places restrictions on the waves which exist at
any interface:

α

x

z
kI

which leads to conditions on the amplitudes and
the wave vectors of the waves at z = 0. Taking
vector components:

ψI = aI e
i k⃗I ·⃗r incident wave

ψR = aRe
i k⃗R ·⃗r reflected wave

ψT = aT e
i k⃗T ·⃗r transmitted wave

aT = aI + aR

aT k⃗T = aI k⃗I + aR k⃗R

aTkT cosα′ = aIkI cosα+ aRkR cosα

− aTkT sinα′ = −aIkI sinα+ aRkR sinα
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Parallel projection & Snell’s Law

Starting with the equation for the parallel
projection of the field on the surface and
noting that

Combining with the amplitude equation and
cancelling k

aT = aI + aR

This simply results in Snell’s Law which for
small angles can be expanded.

Recalling that αc =
√
2δ

|k⃗R | = |k⃗I | = k in vacuum

|k⃗T | = nk in medium

aTkT cosα′ = aIkI cosα+ aRkR cosα

aTnk cosα
′ = aIk cosα+ aRk cosα

(aI + aR)n cosα
′ = (aI + aR) cosα

cosα = n cosα′

1− α2

2
= (1− δ + iβ)

(
1− α′ 2

2

)
−→ α2 = α′ 2 + α2

c − 2iβ
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Perpendicular projection & Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

and using the amplitude
equation

aT = aI + aR

taking n ≈ 1

The Fresnel Equations can now
be derived

− aTkT sinα′ = −aIkI sinα+ aRkR sinα

− aTnk sinα
′ = −(aI − aR)k sinα

(aI + aR)n sinα
′ = (aI − aR) sinα

aI − aR
aI + aR

=
n sinα′

sinα
≈ n

α′

α
≈ α′

α

aIα− aRα = aIα
′ + aRα

′

aI (α− α′) = aR(α+ α′)

→ r

aI (α− α′) = (aT − aI )(α+ α′)

→ t

r =
aR
aI

=
α− α′

α+ α′ , t =
aT
aI

=
2α

α+ α′
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Reflectivity and transmittivity

r and t are called the reflection and
transmission coefficients, respectively.

The
reflectivity R = |r2| and transmittivity
T = |t2| are the squares of these quantities,
which are complex because α′ is complex.

α′ = Re(α′) + i Im(α′)

aT e
ikα′z = aT e ik Re(α′)z e−k Im(α′)z

Λ =
1

2k Im(α′)

r =
aR
aI

=
α− α′

α+ α′

t =
aT
aI

=
2α

α+ α′

In the z direction, the amplitude of the
transmitted wave has two terms with the
second one being the attenuation of the
wave in the medium due to absorption. This
attenuation is characterized by a quantity
called the penetration depth, Λ.
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Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector
transfer.

Q = 2k sinα ≈ 2kα

and for the critical angle
Qc = 2k sinαc ≈ 2kαc

in dimensionless units, these become

q =
Q

Qc
≈ 2k

Qc
α q′ =

Q ′

Qc
≈ 2k

Qc
α′

q is a convenient parameter to use because it is a combination of two parameters which are
often varied in experiments, the angle of incidence α and the wavenumber (energy) of the
x-ray, k .
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Defining equations in q

Start with the reduced version of Snell’s
Law

and multiply by a 1/α2
c = (2k/Qc)

2.
Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19



Defining equations in q

Start with the reduced version of Snell’s
Law and multiply by a 1/α2

c = (2k/Qc)
2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 11, 2024 19 / 19


	Preamble
	Today's outline - September 11, 2024

	Introduction to Reflection and Refraction
	Refraction & reflection of x-rays
	Uses of total external reflection

	Reflection and Refraction
	Refractive index in the x-ray region
	Thin plate response - scattering approach
	Thin plate response - scattering approach
	Thin plate response - scattering approach
	Thin plate response - refraction approach
	Calculating n
	Index of refraction & critical angle
	Connection to atomic scattering
	Absorption term in n
	Absorption term in n

	Interface Boundary Conditions
	Electromagnetic boundary conditions

	Fresnel Equations
	Parallel projection & Snell's Law
	Perpendicular projection & Fresnel equations
	Reflectivity and transmittivity
	Wavevector transfers
	Defining equations in q


