
Today’s outline - September 04, 2024

• Absorption calculations

• Undulator spectrum

• Undulator coherence

• APS-U, ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #02:
Problems on Canvas
due Monday, September 16, 2024

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Monday, September 30, 2024
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Absorption calculations

For an elemental material, the absorption coefficient, µ, is simply the product of the atomic
density, ρa, times the atomic absorption cross-section, σa.

rewriting in terms of the mass density, ρm, the atomic mass, Ma, and Avogadro’s number, NA,
the absorption coefficient becomes

µ = ρaσa =

(
ρmNA

Ma

)
σa

if the absorber is made up of a number of different atoms, this calculation can be generalized

µ =
∑
j

ρjσaj

where ρj and σaj are the atomic density and atomic absorption cross-section of each
component
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Absorption coefficient of a compound

µ[cm−1] is the linear absorption coefficient. It is useful in prac-
tice to define the mass absorption coefficient, µm[cm

2/g]

Beer’s Law now becomes

µm = µ/ρ

I = I0e
−µz = I0e

−µmρz

Suppose we want to compute the absorption coefficient per unit mass of a compound if we
distribute it over an area A

If the compound is made up of xj atoms with atomic mass Mj

and has a molecular mass Mc and density ρc , we can write:

The “thickness” of a mass m of the compound, distributed over
an area A is then:

This leads to an absorption per unit mass of µm/A and Beer’s
law becomes

Mc =
∑
j

xjMj

µm = (NA/Mc)
∑
j

xjσaj

z =
m

ρcA

I = I0e
−(µm/A)m
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Absorption of Fe2O3 at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass
cross sections, σj = NAσaj/Mj so we have

I = I0e
−(µm/A)m, µm =

NA

Mc

∑
j

xjσaj

=
NA

Mc

∑
j

Mj

NA
xjσj =

1

Mc

∑
j

Mjxjσj

the molecular mass and density of Fe2O3 are

begin by finding tabulated values of the cross-section
for the elements Fe and O at 5 keV

assuming a 5 mm diameter pellet

µm =
1

159.69
[2 · 55.895 · 138.860 + 3 · 16.000 · 46.666]

= 111.23 cm2/g −→ µm/A = 566.7 g−1

µ = µmρ = 582.9 cm−1, −→ 1/µ = 17.2µm

ρ = 5.24 g/cm3

MFe = 55.895 g/mol

MO = 16.000 g/mol

Mc = 159.69 g/mol

σFe = 138.860 cm2/g

σO = 46.666 cm2/g

A = π(0.25 cm)2 = 0.1963 cm2
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Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent

10
-2

10
0

10
2

10
4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Carbon

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent

10
-2

10
0

10
2

10
4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Carbon

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent

10
-2

10
0

10
2

10
4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Carbon

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent

10
-2

10
0

10
2

10
4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Carbon

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent

10
-2

10
0

10
2

10
4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Carbon

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Comparison of cross sections

Photoelectric absorption dominates at
low energies

Thomson scattering (coherent) drops
rapidly with energy

Compton scattering (incoherent)
dominates at medium energies

Pair production dominates at high en-
ergies

Each portion of the cross-section is
element-dependent 10

-2
10

0
10

2
10

4

Energy (MeV)

10
-4

10
-2

10
0

10
2

10
4

C
ro

s
s
 S

e
c
ti
o
n
 (

c
m

2
/g

)

Lead

Coherent scattering

Incoherent scattering

Photoelectric absorption

Nuclear pair production

Electron pair production

Total

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 5 / 21



Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic
radiation also consists of a traveling magnetic field. In principle, this means it should interact
with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic
moment and spin) but the strength of the interaction is comparatively weak.

Amagnetic

Acharge
=

ℏω
mc2

=
5.11× 103 eV

0.511× 106 eV
= 0.01

For an x-ray of energy 5.11 keV, interacting with an electron with mass 0.511 MeV. Only with
the advent of synchrotron radiation sources has magnetic x-ray scattering become a practical
experimental technique.
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Undulator review

For an undulator of period λu we have derived the following undulator parameters and their
relationships:

the K parameter, a dimension-
less quantity which represents the
“strength” of the undulator

the electron path length through
the undulator, Sλu

the fundamental wavelength of the
undulator, λ1 and the origin of the
odd and even harmonics

K =
e

2πmc
λuB0

= 0.934λu[cm]B0[T]

Sλu ≈ λu

(
1 +

1

4

K 2

γ2

)

λ1 ≈
λu
2γ2

(
1 +

K 2

2

)
Now let us look at additional properties
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Higher harmonics

y
x

z

ψ

φ

θ

n Recall that we developed an expression for the
Doppler time compression of the emission from a mov-
ing electron as a function of the observer angle.

This can be rewritten in terms of the coordinates in
the figure using the vector of unit length in the ob-
server direction:

dt

dt ′
= 1− n⃗ · β⃗(t ′) ≈ 1− β

[
αϕ+

(
1− θ2

2
− α2

2

)] n⃗ ≈
{
ϕ, ψ, (1− θ2/2)

}

β⃗ ≈ β

{
α, 0, (1− α2/2)

}
dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αϕ− θ2

2
− α2

2

)
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Higher harmonics

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αϕ− θ2

2
− α2

2

)

≈ �1− �1− αϕ+
θ2

2
+
α2

2
+

1

2γ2
=

1

2

(
θ2 + α2 +

1

γ2

)
− αϕ

This differential equation can be solved, realizing that ϕ and θ are constant while α(t ′) varies
as the electron moves through the insertion device, and gives:

ω1t = ωut
′ − K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut

′)− 2Kγ

1 + (γθ)2 + K 2/2
ϕ sin (ωut

′)

ω1 ≫ ωu as expected because of the Doppler compression , but they are not proportional
because of the second and third terms.

The motion of the electron, sinωut
′, is always sinusoidal, but because of the additional terms,

the motion as seen by the observer, sinω1t, is not.
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On-axis undulator characteristics

ω1t = ωut
′ − K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut

′)

− 2Kγ

1 + (γθ)2 + K 2/2
ϕ sin (ωut

′)

Suppose we have K = 1 and θ = 0 (on axis), then

ω1t = ωut
′ +

1

6
sin (2ωut

′)

Plotting sinωut
′ and sinω1t shows the deviation

from sinusoidal.

Similarly, for K = 2 and K = 5, the deviation
becomes more pronounced. This shows how higher
harmonics must be present in the radiation as seen
by the observer.
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Off-axis undulator characteristics

ω1t = ωut
′ − K 2/4
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When K = 2 and θ = ϕ = 1/γ, we have

ω1t = ωut
′ +

1

4
sin (2ωut

′) + sinωut
′

The last term introduces an antisymmetric term
which skews the function and leads to the pres-
ence of forbidden harmonics (2nd , 4th, etc) in the
radiation from the undulator compared to the on-
axis radiation.
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Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather
than the space domain.

A diffraction grating consists of N coherent sources whose emission is
detected at a single point.

δL

δL

The radiation from each slit has to travel a slightly
different distance to get to the detector. For consecu-
tive slits this path length difference, Lm+1 − Lm = δL,
gives rise to a phase shift, 2πϵ = 2πδL/λ. So at the
detector, we have a sum of waves:

N−1∑
m=0

e i(k⃗ ·⃗r+2πmϵ) = e i k⃗ ·⃗r
N−1∑
m=0

e i2πmϵ

the phase shift from each undulator pole depends on
the wavelength λu
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Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km

= 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1

and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1

= 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1)

= 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN

−→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Geometric series

The sum is simply a geometric series, SN with k = e i2πϵ

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 13 / 21



Intensity from a diffraction grating

Restoring the expression for k = e i2πϵ, we have:

N−1∑
m=0

e i2πmϵ = SN =
1− e i2πNϵ

1− e i2πϵ
=

(
e−iπNϵ − e iπNϵ

e−iπϵ − e iπϵ

)
e iπNϵ

e iπϵ

SN =

(
sin (πNϵ)

sin (πϵ)

)
e iπ(N−1)ϵ

Therefore, for the diffraction grating we can calculate the intensity at the detector as

I =

∣∣∣∣∣e i k⃗ ·⃗r
N−1∑
m=0

e i2πmϵ

∣∣∣∣∣
2

=
∣∣∣e i k⃗ ·⃗rSN ∣∣∣2 =

∣∣∣∣e i k⃗ ·⃗r sin (πNϵ)sin (πϵ)
e iπ(N−1)ϵ

∣∣∣∣2

I =
sin2 (πNϵ)

sin2 (πϵ)
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=0

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=5
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=10
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=15
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=20
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=25
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=30
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=35
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=40
o

With the height and width of the peak dependent
on the number of poles.
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Beam coherence

The coherence of an undulator depends on the
amount each pole’s emission is out of phase with
the others, ϵ.

2πε=45
o

With the height and width of the peak dependent
on the number of poles.
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Undulator monochromaticity

2πε

In
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32 poles

16 poles

96 poles The more poles in the undulator, the more
monochromatic the beam since a slight change in
ϵ = δL/λ implies a slightly different wavelength λ

Another way to look at this is that the longer
the undulator, the longer the pulse train in time
and the narrower the frequency distribution in its
Fourier Transform

The APS has a 72 pole undulator of 3.3 cm period

Higher order harmonics have narrower energy
bandwidth but lower peak intensity
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Synchrotron time structure

There are two important time scales for a
storage ring such as the APS: pulse length
and interpulse spacing

The APS pulse length in 24-bunch mode is
90 ps while the pulses come every 154 ns

Other modes include single-bunch mode for
timing experiments and 324-bunch mode
(inter pulse timing of 11.7 ns) for a more
constant x-ray flux
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Spectral comparison

• Bending magnet

• Broad, nearly white spectrum

• Energies extend to 100’s of keV

• Wiggler

• Shifts critical energy higher than bending magnet

• Brilliance is more than an order of magnitude
greater than a bending magnet

• Undulator

• Brilliance is 6 orders larger than a bending magnet

• Both odd and even harmonics appear

• Harmonics can be tuned in energy (dashed lines)
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Emittance

Is there a limit to the brightness of an undulator source at a synchrotron?

the brightness is inversely proportional to the square of the product of the linear source size
and the angular divergence

brightness =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] [0.1%bandwidth]

the product of the source size (σ) and divergence (σ′) is
called the emittance, ϵ and the brightness is limited by the
product of the emittance of the radiation in the horizontal
and vertical directions ϵxϵy = (σxσ

′
x)(σyσ

′
y )

this emittance cannot be changed but it can be rotated or
deformed by magnetic fields as the electron beam travels
around the storage ring as long as the area is kept constant

y

y

σ

σ

y

y
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APS emittance

For photon emission from a single electron in
a 2m undulator at 1Å

σγ=

√
Lλ

4π
= 1.3µm

σ′γ=

√
λ

L
= 7.1µrad

current APS electron beam parameters are

σy= 9.1µm

σ′y= 3.0µrad

must convolute to get photon emission from
entire beam (in vertical direction)

y

10µrad

-10µrad

10µm-10µm

y

σradiation = 9.1µm

σ′radiation = 7.7µrad
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σγ=

√
Lλ

4π
= 1.3µm

σ′γ=

√
λ

L
= 7.1µrad

current APS electron beam parameters are

σy= 9.1µm

σ′y= 3.0µrad

must convolute to get photon emission from
entire beam (in vertical direction)

y

10µrad

-10µrad

10µm-10µm

y

σradiation = 9.1µm

σ′radiation = 7.7µrad

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 September 04, 2024 20 / 21



APS emittance

For photon emission from a single electron in
a 2m undulator at 1Å
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Evolution of APS parameters

Parameter
APS

APS-U

1995 2001 2005

Timing Brightness

Bunches 24 & 324

48 324

σx 334 µm 352 µm 280 µm

18.1 µm 21.8 µm

σ′x 24 µrad 22 µrad 11.6 µrad

2.6 µrad 3.1 µrad

σy 89 µm 18.4 µm 9.1 µm

10.6 µm 4.1 µm

σ′y 8.9 µrad 4.2 µrad 3.0 µrad

When first commissioned in 1995, the APS electron beam size and divergence was relatively
large, particularly in the horizontal, x direction

By the end of the first decade of operation, the horizontal source size decreased by about 16%
and its horizontal divergence by more than 50% while the vertical source size decreased by
over 90% and the vertical divergence by nearly 67%

The APS-U will make the beam smaller and more square in space making for higher
performance insertion device beam lines.
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