
Today’s outline - August 28, 2024

• The bending magnet source

• Curved arc emission
• Characteristic energy
• Power and flux
• Polarization

• Insertion devices

• Undulator parameters

Reading Assignment: Chapter 2.5–2.6

Homework Assignment #01:
Chapter 2: 2,3,5,6,8
due Wednesday, September 04, 2024

Homework Assignment #02:
Problems on Canvas
due Monday, September 16, 2024
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Segmented arc review

The first approximation to a bending magnet source is the segmented arc

A

B C

v cosα ∆t’

c∆t’

α

(c-v cosα)∆t’

This approximation gives a clear idea of how an elec-
tron passing through a bending magnet can emit x-
ray radiation in the lab frame.

It can also be used to calculate the off-axis emission
spectrum.

However, this is only qualitative, and it is important to be able to calculate the spectrum of
radiation from a bending magnet source as a function of observation angle accurately.

Recall that the compression ratio for the segmented arc is

∆t

∆t ′
= (1− β cosα)
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Curved arc emission

1/γ

ω
o

B

ρ

But instantaneously, the compression ratio is:

∆t

∆t ′

∣∣∣
∆t→0

=
dt

dt ′
= 1− β cosα

this allows us to treat the electron path as a continuous
arc.

An electron moving in a constant magnetic field describes
a circular path

FLorentz = evB a =
dp

dt
=

v2

ρ

evB = m
v2

ρ
−→ mv = p = ρeB
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Electron bending radius

1/γ

ω
o

B

ρ

mv = p = ρeB

but the electron is relativistic so we must correct the
momentum to retain consistent laws of physics p → γmv

γmv = ρeB

at a synchrotron γ ≫ 1 so v ≈ c

γmc ≈ ρeB −→ γmc2 ≈ ρecB

since E = γmc2 and c = 2.998× 108m/s2 we have

ρ =
E [J]

ecB[T]
=

E [eV]
cB[T]

= 3.336
E [GeV]
B[T]
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Curved arc emission

1/γ

ω
o

B

ρ

The observer, looking in the plane of the circular trajectory,

“sees” the electron oscillate over a half period in a time ∆t
(observer’s frame).
The electron, in the laboratory frame, travels this arc in:

∆t ′ =
(1/γ)ρ

v
=

1

γω0

Because of the Doppler shift, the observer sees the electron
emitting a pulse of radiation of length

∆t ∝ ∆t ′

γ2
=

1

γ3ω0

The Fourier transform of this pulse is the spectrum of the ra-
diation from the bending magnet.
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it’s characteristic frequency, ωc which,
when the calculation is performed rigorously is:

ωc =
3

2
γ3ω0

but since T is the period of the rotation through the full circle of radius ρ

ω0 =
2π

T
= 2π

c

2πρ
=

c

ρ
=

ceB

γmc

we can therefore calculate the characteristic energy Ec

Ec = ℏωc =
3

2
ℏγ3

ceB

γmc
=

3

2
ℏceB

γ2

mc
=

3ℏeB
2m

E2

(mc2)2

converting to storage ring units

Ec [keV] = 0.665E2[GeV]B[T]
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Bending magnet spectrum

When the radiation pulse time is Fourier
transformed, we obtain the spectrum of a
bending magnet.

Scaling by the characteristic energy,
gives a universal curve

1.33× 1013E2 I

(
ω

ωc

)2

K 2
2/3

(
ω

2ωc

)
where K2/3 is a modified Bessel function of
the second kind.
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Power from a bending magnet

The radiated power is given in storage ring units by:

P[kW] = 1.266E2[GeV]B2[T]L[m]I [A]

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where E = 6 GeV, B = 0.8 T, Ec = 19.2 keV and the
bending radius ρ = 24.8 m. Assuming that the aperture is 1 mm2 at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95× 1013)(0.052mrad2)(62GeV2)(0.2A) = 3.5× 1011ph/s/0.1%BW

The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)2(0.8T)2(1.24× 10−3m)(0.2A) = 7.3W
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Polarization

A bending magnet also produces circularly polarized radiation

• If the observer is in the plane of the electron orbit,
the electron motion looks like a half period of
linear sinusoidal motion

• From above, the motion looks like an arc in the
clockwise direction

• From below, the motion looks like an arc in the
counterclockwise direction

The result is circularly polarized radiation above and below the on-axis radiation.
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Wigglers and undulators

Wiggler

Like bending magnet except:

• larger B⃗ → higher Ec

• more bends → higher power

Undulator

Different from bending magnet:

• shallow bends → smaller source

• interference → peaked spectrum
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Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = B0/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 1.266E2
e [GeV]B

2[T]L[m]I [A]

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 11 / 19



Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = B0/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 1.266E2
e [GeV]B

2[T]L[m]I [A]

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 11 / 19



Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = B0/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 1.266E2
e [GeV]B

2[T]L[m]I [A]

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 11 / 19



Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = B0/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 0.633E2
e [GeV]B

2
0 [T]L[m]I [A]

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 11 / 19



Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = B0/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 0.633E2
e [GeV]B

2
0 [T]L[m]I [A]

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 11 / 19



Undulator characterization

α
max

A

λ
u

z

x

Undulator radiation is characterized by three parameters:

• The energy of the electrons, γmc2

• The wavelength, λu = 2π/ku, of its
magnetic field

• The maximum angular deviaton of the
electron, αmax

From the electron trajectory:
x = A sin (kuz)

αmax =
dx

dz

∣∣∣
z=0

= Aku cos (kuz)
∣∣∣
z=0

= Aku = 2πA/λu

Define a dimensionless quantity, K which scales αmax to the natural opening angle of the
radiation, 1/γ

K = αmaxγ
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Circular path approximation

Aρ

λ
u

z

x

Consider the trajectory of the electron along one period of the undulator.

Since the curvature
is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at
x = −(ρ− A) and z = 0.
The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =
√
ρ2 − z2
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Radius of curvature

Aρ

λ
u

z

x
ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =
√
ρ2 − z2

From the equation for a circle:

For the undulating path:

x = A− ρ+
√

ρ2 − z2 = A− ρ+ ρ

√
1− z2

ρ2
≈ A− ρ+ ρ

(
1− 1

2

z2

ρ2

)
≈ A− z2

2ρ

x = A cos (kuz) ≈ A

(
1− k2uz

2

2

)
≈ A− Ak2uz

2

2
Combining, we have

z2

2ρ
=

Ak2uz
2

2
−→ 1

ρ
= Ak2u −→ ρ =

1

Ak2u
=

λ2
u

4π2A
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Electron path length

The displacement ds of the electron can be ex-
pressed in terms of the two coordinates, x and z
as:

ds =
√
(dx)2 + (dz)2 =

√
1 +

(
dx

dz

)2

dz

ds
dx

dz

dx

dz
=

d

dz
A cos kuz = −Aku sin kuz

Now calculate the length of the path traveled by the electron over one period of the undulator

Sλu =

∫ λu
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√
1 +

(
dx

dz

)2

dz ≈
∫ λu
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[
1 +

1
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(
dx

dz

)2
]
dz =

∫ λu
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1 +
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2

sin2 kuz
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dz
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∫ λu
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1 +

A2k2u
2

(
1

2
− 1

2
cos 2kuz

)]
dz =
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z +

A2k2u
4

z +�������A2ku
8

sin 2kuz

∣∣∣∣λu

0

= λu

(
1 +

A2k2u
4

)
= λu

(
1 +

1

4

K 2

γ2

)
K = γAku
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The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of the electron’s path in
the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p = γmv ≈ γmc = ρeB0 −→ γmc ≈ γ

Kku
eB0

Combining the above expressions yields

K =
eB0

mcku
=

e

2πmc
λuB0 = 0.934λu[cm]B0[T]

For APS Undulator A, λu = 3.3cm and B0 = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85
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Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

λ
u

The emitted wave travels slightly
faster than the electron

moving cT ′ in the time the electron
travels a distance λu along the undu-
lator

The observer sees radiation with a compressed
wavelength, along with harmonics which satisfy
the same condition.

The fundamental wavelength must be corrected
for the observer angle θ from the centerline of the
undulator

λ1 = cT ′ − λu = 2λ2 = nλn

λ1 = cT ′ − λucos θ
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T ′

In a time T ′ the electron travels a distance
Sλu, so T ′ = Sλu/v and we know that

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation
angle θ is small so

λ1 = T ′ − λu cos θ

=
Sλu

v
− λu cos θ

= λu

(
S
c

v
− cos θ

)
= λu

(
S

β
− cos θ

)
= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

λ1 ≈ λu

(
1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
Regrouping and substituting . . .

λ1 =
λu

2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)
≈ λu

2γ2

(
2γ2

[
1

β
− 1

]
+

K 2

2β
− (γθ)2

)
≈ λu

2γ2

(
2

1

1− β2

[
1− β

β

]
+

K 2

2β
− (γθ)2

)
≈ λu

2γ2

(
2

β(1 + β)
+

K 2

2β
− (γθ)2

)
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The fundamental wavelength

If we assume that β ∼ 1 for these highly relativistic electrons

λ1 ≈
λu

2γ2

(
2

β(1 + β)
+

K 2

2β
− (γθ)2

)

≈ λu

2γ2

(
1 +

K 2

2β
− (γθ)2

)
and directly on axis

λ1 ≈
λu

2γ2

(
1 +

K 2

2

)
for a typical undulator γ ∼ 104, K ∼ 1, and λu ∼ 2cm so we estimate

λ1 ≈
2× 10−2

2 (104)2

(
1 +

(1)2

2

)
= 1.5× 10−10m = 1.5Å

This corresponds to an energy E1 ≈ 8.2keV but as the undulator gap is widened, B0 decreases,
K decreases, λ1 decreases, and E1 increases.
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,
K decreases, λ1 decreases, and E1 increases.
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This corresponds to an energy E1 ≈ 8.2keV but as the undulator gap is widened, B0 decreases,
K decreases

, λ1 decreases, and E1 increases.

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 28, 2024 19 / 19



The fundamental wavelength

If we assume that β ∼ 1 for these highly relativistic electrons

λ1 ≈
λu

2γ2

(
2

β(1 + β)
+

K 2

2β
− (γθ)2

)
≈ λu

2γ2

(
1 +

K 2

2β
− (γθ)2

)
and directly on axis

λ1 ≈
λu

2γ2

(
1 +

K 2

2

)
for a typical undulator γ ∼ 104, K ∼ 1, and λu ∼ 2cm so we estimate

λ1 ≈
2× 10−2

2 (104)2

(
1 +

(1)2

2

)
= 1.5× 10−10m = 1.5Å
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