
Today’s outline - August 21, 2024

• Scattering from a molecule

• Crystal lattice types

• The reciprocal lattice

• Compton (inelastic) scattering

• X-ray absorption

Reading Assignment: Chapter 2.1–2.2

Homework Assignment #01:
Chapter 2: 2,3,5,6,8
due Wednesday, September 04, 2024

Homework Assignment #02:
Problems on Canvas
due Monday, September 16, 2024
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

atomic form factor

resonant scattering terms

polarization factor

−r0 = − e2

4πϵ0mc2

f 0(Q) =

∫
ρ(r)e iQ·rd3r

f ′(ℏω) + if ′′(ℏω)

P =


1

sin2Ψ
1
2(1 + sin2Ψ)

− r0f (Q, ℏω) sin2Ψ = −r0
[
f 0(Q)

+ f ′(ℏω) + if ′′(ℏω)

]
sin2Ψ
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Computing atomic form factors

The atomic form factor is the Fourier transform of the
electron distribution in the atom

Assuming that this density is spherically symmetric,
the form factors are reasonably well approximated by
a sum of gaussians

f (Q) =
4∑

i=1

aie
−bi (Q/2π)2 + c

From the International Tables for Crystallography
 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10

Mn

Mn
2+

Mn
3+

Mn
4+

f(
Q

)

Q

a1 b1 a2 b2 a3 b3 a4 b4 c

Mn 11.2819 5.3409 7.3573 0.3432 3.0193 17.8674 2.2441 83.7543 1.0896
Mn2+ 10.8061 5.2796 7.3620 0.3435 3.5268 14.3430 0.2184 41.3235 1.0874
Mn3+ 9.8452 4.9180 7.8719 0.2944 3.5653 10.8171 0.3236 24.1281 0.3940
Mn4+ 9.9625 4.8485 7.9706 0.2833 2.7607 10.4852 0.0545 27.5730 0.2519
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Scattering from molecules

Recall for a single atom we have a form factor

f (Q) = f 0(Q) + f ′(ℏω) + if ′′(ℏω)

extending to a molecule . . .

Fmolecule(Q) =
∑
j

fj(Q)e iQ·rj

Fmolecule(Q) = f1(Q)e iQ·r1 + f2(Q)e iQ·r2 + f3(Q)e iQ·r3
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Scattering from a crystal

and similarly, to a crystal lattice ...

. . . which is simply a periodic array of molecules

F crystal(Q) = FmoleculeF lattice

F crystal(Q) =
∑
j

fj(Q)e iQ·rj
∑
n

e iQ·Rn

The lattice term,
∑

e iQ·Rn , is a sum over a large number so it is always small unless
Q ·Rn = 2πm where Rn = n1a1+ n2a2+ n3a3 is a real space lattice vector and m is an integer.
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Crystal lattices

There are 7 possible real space lattices:

triclinic

α
β

γ

α, β, γ = 90

c

a

hexagonal

monoclinic

α
β

γ

β = γ = 90

α = 90

a

a

a

rhombohedral

α
β

γ

α = β = γ = 90

b

c

a

α, β, γ = 90

orthorhombic

a = b = c

a

a

a

α, β, γ = 90

cubic

c

a

α, β, γ = 90

tetragonal

a

a = c

a

a

a

rhombohedral

α
β

γ

α = β = γ = 90
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Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

b

c

a

α, β, γ = 90

orthorhombic

a = b = c

a1 = ax̂, a2 = bŷ, a3 = c ẑ

a1 × a2 = abẑ

(a1 × a2) · a3 = abẑ · c ẑ
(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!

This unit cell is repeated infinitely in 3-dimensions and thus, the location of each lattice point
can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, Rn and a crystal is made by putting a
molecule at each lattice point.

Rn = n1a1 + n2a2 + n3a3
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a1 × a2 = abẑ
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(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!

This unit cell is repeated infinitely in 3-dimensions and thus, the location of each lattice point
can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, Rn and a crystal is made by putting a
molecule at each lattice point.

Rn = n1a1 + n2a2 + n3a3

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 21, 2024 7 / 21



Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

b

c

a

α, β, γ = 90

orthorhombic

a = b = c

a1 = ax̂, a2 = bŷ, a3 = c ẑ
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(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!

This unit cell is repeated infinitely in 3-dimensions and thus, the location of each lattice point
can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, Rn

and a crystal is made by putting a
molecule at each lattice point.

Rn = n1a1 + n2a2 + n3a3

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 21, 2024 7 / 21



Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

b

c

a

α, β, γ = 90

orthorhombic

a = b = c

a1 = ax̂, a2 = bŷ, a3 = c ẑ
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Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
= 2π

a2 × a3
V

a∗2 = 2π
a3 × a1

a2 · (a3 × a1)
= 2π

a3 × a1
V

a∗3 = 2π
a1 × a2

a3 · (a1 × a2)
= 2π

a1 × a2
V

In analogy to Rn, we can construct an arbitrary reciprocal space lattice vector Ghkl

Ghkl = ha∗1 + ka∗2 + la∗3

where h, k, and l are integers called Miller indices
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Laue condition

Because of the construction of the reciprocal lattice

Ghkl · Rn = (n1a1 + n2a2 + n3a3) · (ha∗1 + ka∗2 + la∗3)

= (n1a1 + n2a2 + n3a3) · 2π
(
h
a2 × a3

V
+ k

a3 × a1
V

+ l
a1 × a2

V

)
= 2π(hn1 + kn2 + ln3) = 2πm

and therefore, the crystal scattering factor is non-zero only when∑
e iQ·Rn ̸= 0 Q = Ghkl

so a significant number of molecules scatter in phase with each other

As we shall see later, this Laue condition, is equivalent to the more typically used Bragg
condition for diffraction: 2d sin θ = nλ
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Multiple slit interference

A crystal is, therefore, a diffraction grating with ∼ 1020 slits!

When Q is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the
detector.
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Compton scattering

Consider a photon-electron collision

p = ℏk = 2πℏ/λ
p′ = ℏk′ = 2πℏ/λ′

|k| ≠
∣∣k′∣∣

ϕ

θ

λ

v

λ

Treat the electron relativistically and conserve energy and momentum

mc2 +
hc

λ
=

hc

λ′ + γmc2 (energy)

h

λ
=

h

λ′ cosϕ+ γmv cos θ (x-axis)

0 =
h

λ′ sinϕ+ γmv sin θ (y-axis)
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∣∣k′∣∣

ϕ

θ

λ

v

λ

Treat the electron relativistically and conserve energy and momentum

mc2 +
hc

λ
=

hc

λ′ + γmc2 (energy)

h

λ
=

h

λ′ cosϕ+ γmv cos θ (x-axis)

0 =
h

λ′ sinϕ+ γmv sin θ (y-axis)

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 21, 2024 11 / 21



Compton scattering

Consider a photon-electron collision

p = ℏk = 2πℏ/λ

p′ = ℏk′ = 2πℏ/λ′

|k| ≠
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Compton scattering derivation

squaring the momentum
equations

(
h

λ
− h

λ′ cosϕ

)2

= γ2m2v2 cos2 θ(
− h

λ′ sinϕ

)2

= γ2m2v2 sin2 θ

now add them together, substitute sin2 θ + cos2 θ = 1, expand the squares, and
sin2 ϕ+ cos2 ϕ = 1, then rearrange and substitute v = βc

γ2m2v2
(
sin2 θ + cos2 θ

)
=

(
h

λ
− h

λ′ cosϕ

)2

+

(
− h

λ′ sinϕ

)2

γ2m2v2 =
h2

λ2
− 2h2

λλ′ cosϕ+
h2

λ′2 sin
2 ϕ+

h2

λ′2 cos
2 ϕ

m2c2β2

1− β2
=

m2v2

1− β2
=

h2

λ2
− 2h2

λλ′ cosϕ+
h2

λ′2
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Compton scattering derivation (cont.)

Now take the energy equation and square it,

then solve it for β2 which is substituted into the
equation from the momentum.

(
mc2 +

hc

λ
− hc

λ′

)2

= γ2m2c4 =
m2c4

1− β2

β2 = 1− m2c4(
mc2 + hc

λ − hc
λ′

)2
h2

λ2
+

h2

λ′2 − 2h2

λλ′ cosϕ =
m2c2β2

1− β2

=
1

c2

(
mc2 +

hc

λ
− hc

λ′

)2

−m2c2
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Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

h2

λ2
+

h2

λ′2 − 2h2

λλ′ cosϕ =

(
mc +

h

λ
− h

λ′

)2

−m2c2

=���m2c2 +
h2

λ2
+

h2

λ′2 − 2mch

λ
− 2mch

λ′ +
2h2

λλ′ −���m2c2

= 2m

(
hc

λ
− hc

λ′

)
+

�
�
�h2

λ2
+
�
�
�h2

λ′2 − 2h2

λλ′

2h2

��λλ′ (1− cosϕ) = 2m

(
hc

λ
− hc

λ′

)
= 2mhc

(
λ′ − λ

λλ′

)
=

2mhc∆λ

��λλ′

∆λ =
h

mc
(1− cosϕ)
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Compton scattering results

Thus, for an electron

λc = ℏ/mc = 3.86× 10−3Å

r0 =
e2

4πϵ0mc2
= 2.82× 10−5Å

Comparing the two scattering lengths:

r0/λC = 1/137
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Comparing the two scattering lengths:

r0/λC = 1/137

10500 11000 11500 12000 12500
Energy (eV)

X
-r

a
y
 I

n
te

n
s
it
y
 (

a
rb

 u
n

it
s
)

φ=160
o

Scattering of 12 keV x-rays from a silicon wafer at 160◦ with a bent crystal wavelength
dispersive analyzer

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2024 August 21, 2024 15 / 21



X-ray absorption

I
o

z

dz

µ

integrating both sides

and taking the anti-log

if the intensity at z = 0 is I0, then

For absorption coefficient µ and thickness dz
the x-ray intensity is attenuated as

dI = −I (z)µdz −→ dI

I (z)
= −µdz∫

dI

I (z)
= −

∫
µdz −→ ln(I ) = −µz + C

I = eCe−µz = Ae−µz

I = I0e
−µz

This is just Beer’s law with an absorption coefficient which depends on x-ray parameters.
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Absorption event

νh

k

X-ray is absorbed by an atom

Energy is transferred to a core electron

Electron escapes atomic potential into the continuum

Ion remains with a core-hole
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Fluorescence emission

An ion with a core-hole is quite unstable (≈ 10−15s)

νh

∆t

−→

νh After a short time a higher level electron will drop
down in energy to fill the core hole

Energy is liberated in the form of a fluorescence
photon

This leaves a second hole (not core) which is then
filled from an even higher shell

The result is a cascade of fluorescence photons
which are characteristic of the absorbing atom
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Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible
mechanisms

νh

∆t

−→

k
In the Auger process, a higher level electron will
drop down in energy to fill the core hole

The energy liberated causes the secondary emission
of an electron

This leaves two holes which then filled from higher
shells

So that the secondary electron is accompanied by
fluorescence emissions at lower energies
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Absorption coefficient

The absorption coeffi-
cient µ,

depends strongly
on the x-ray energy E ,
the atomic number of the
absorbing atoms Z , as
well as the density ρ, and
atomic mass A:

µ ∼

ρZ 4

AE 3
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Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

but atoms in a solid or liquid show
fine structure after the absorption edge called XANES and EXAFS

−→
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