
Today’s outline - November 09, 2021

• HAXPES Experiments

• X-ray magnetic circular dichroism

• Resonant Scattering

Reading Assignment: Chapter 8.4

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, November 16, 2021

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Tuesday, November 30, 2021
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Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron technique

• Get it approved by instructor first!

• Schedule a 20 minute time on Final Exam Day (Tuesday, Dec 5, 2021,
09:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can be approached using
synchrotron radiation techniques

• Make proposal and get approval from instructor before starting

• Must be different techique than your presentation!
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HAXPES of buried interfaces

HAXPES is used to probe the thickness of a CoFe2O4/La0.66Sr0.34MnO3 heterostructure by
varying both angle of incidence and photon energy

The thickness of the CoFe2O4 overlayer mea-
sured as 6.5 ± 0.5 nm by TEM was probed in
two ways:

using 4.8 keV photons and varying the angle,
the thickness is estimated to be 8.0± 2.0 nm

using photon energies from 4.0 keV to 6.0 keV,
the thickness was estimated to be 6.8±2.8 nm

Both results give consistent results with proper
normalization and also show the uniformity of
the CoFe2O4 overlayer

B. Pal, S. Mukherjee, and D.D. Sarma, “Probing complex heterostructures using hard x-ray photoelectron spectroscopy (HAXPES),” J. Electron Spect. Related
Phenomena 200, 332-339 (2015).
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HAXPES of Zn1−xCdxSe1−ySy nanocrystals

Energy dispersive measurements can provide depth profiling of spherical nanoparticles

HAXPES at energies ranging from
1.4 keV to 3.0 keV are used to
probe the S/Se ratio at vary-
ing depths of the 5 nm diameter
nanoparticles

By fitting the S 2p and Se 3p pho-
toemission line the structure is re-
vealed to be CdSe at the core and
ZnCdS in the outer shell

B. Pal, S. Mukherjee, and D.D. Sarma, “Probing complex heterostructures using hard x-ray photoelectron spectroscopy (HAXPES),” J. Electron Spect. Related
Phenomena 200, 332-339 (2015).
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HAXPES of Zn1−xCdxSe1−ySy nanocrystals

The variation in intensity of the Se/S lines and the Zn/Cd lines suggest that the Se is
primarily located in the 2 nm core of the 5 nm particles with the Cd

and that there is a graded
composition region between the CdSe core and the outer ZnCdS shell

B. Pal, S. Mukherjee, and D.D. Sarma, “Probing complex heterostructures using hard x-ray photoelectron spectroscopy (HAXPES),” J. Electron Spect. Related
Phenomena 200, 332-339 (2015).
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HAXPES of Si anodes

Si nanoparticle anodes suffer from the accumulation of the SEI layer which reduces
performance. The SEI is formed by electrochemical decomposition of the electrolyte at the
anode surface.

The SEI from three different electrolyte combi-
nations were studied: ethylene carbonate (EC),
fluoroethylene carbonate (FEC), and a combi-
nation. The first of which gives poorer capacity
and cycling stability.

HAXPES is used to determine the elemental
distribution and compounds present as a func-
tion of depth in the cycled Si anode.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries,” ACS
Appl. Mater. Interfaces 7, 20004-20011 (2015).
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HAXPES of Si anodes
By varying the incident photon energy, it is possible to probe
the SEI as a function of depth.

From the carbon peaks, it is seen that:

• increase in carbon concentration is SEI

• SEI visible after first cycle with EC is likely lithium
ethylene dicarbonate (LEDC, 290 eV peak)

• after 5 cycles, buried LEDC decomposes in EC
electrolytes

• pure FEC shows little LEDC

• pure FEC shows less change with cycling than EC
containing electrolytes

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid
electrolyte interphase (SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011
(2015).
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HAXPES of Si anodes

Using HAXPES data from Si, C, and F, a picture of SEI evolution dependence on electrolyte
emerges

as SEI grows, there is growth of
LixSiOy underneath as product of lithia-
tion/delithiation

EC – SEI contains LEDC-rich SEI which de-
composes but continues be deposited with
cycling

FEC – SEI is mostly poly-FEC with LiF and
LiCO3 which remains stable with cycling

The FEC acts to stabilize the SEI composi-
tion and prevent the change with depth that
occurs with EC.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries,” ACS
Appl. Mater. Interfaces 7, 20004-20011 (2015).
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X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in
scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

in a normal x-ray absorption event, the selection rules
for a transition are ∆l = ±1, ∆m = 0,±1

if circularly polarized x-rays are used, however, the
selection rules for m depend on the “handedness” of
the radiation

∆m = +1 for “right-handed”

∆m = −1 for “left-handed”

this measurement is sensitive to the internal/external
magnetic fields which split the levels according to the
Zeeman effect

νh

1s

p

s

j=1/2 

j=3/2 
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XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave
plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic
field

The absorption coefficient is first measured for both rel-
ative orientations of magnetic splitting and circular po-
larization

these absorption coefficients can be used at the L3 and
L2 edges to compute the orbital (morb) and spin (mspin)
magnetic moments in µB/atom

morb = −4q(10− n3d)

r

mspin ≈ −(6p − 4q)(10− n3d)

r

µ+(E) = 1

x
ln

(
I+0
I+t

)
µ−(E) = 1

x
ln

(
I−0
I−t

)

p =

∫
L3

(µ+ − µ−)dE

q =

∫
L3+L2

(µ+ − µ−)dE

r =

∫
L3+L2

(µ+ + µ−)dE
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XMCD of Yb14MnSb11

The Zintl compounds exhibit interesting magnetic properties including colossal
magnetoresistance which can be of value for spintronics applications

The Zintl compound, Yb14MnSb11 is ferromag-
netic below below 56K with a moment of
∼ 4µB/formula unit

The Mn atom is in a tetrahedral environment sur-
rounded by 4 Sb atoms and there are linear chains
of Sb (black) atoms surrounded by Yb (blue)
atoms

XMCD on a single crystal of Yb14MnSb11 can be
used to understand the origin of the ferromagnetic
moment

“XMCD Characterization of the Ferromagnetic State of Yb14MnSb11,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J.
Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14MnSb11

Mn - L3,L2

Sb - M4,M5

Yb - N4,N5

The Yb XMCD shows no asymmetry due to polar-
ization

The Mn spectrum shows a significant asymmetry
in opposite directions for the L3 and L2 edges

The Sb edges show a tiny asymmetry that is in
opposite sign compared to the Mn edges

Mn provides the bulk of the magnetic moment and
appears to be in the divalent state. Sb provides a
small antiferromagnetic component to the overall
magnetic moment

“XMCD Characterization of the Ferromagnetic State of Yb14MnSb11,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J.
Am. Chem. Soc. 124, 9894-9898 (2002).
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A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with
“free” electrons.

This is not a good approximation since we know:

f (Q⃗, ω) = f 0(Q⃗) + f ′(ω) + if ′′(ω)

σ
a

Photon energy

The absorption cross section can be modeled as a
sum of forced, dissipative oscillators with distribu-
tion g(ωs).

This will produce the resonant scattering term but
not the XANES and EXAFS, which are purely
quantum effects.
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Forced charged oscillator

Consider an electron under the influence of an os-
cillating electric field E⃗in = x̂E0e

−iωt .

where Γ is the damping constant, ωs is the reso-
nant frequency of the oscillator, and Γ ≪ ωs .

assuming a solution of the form

ẍ + Γẋ + ω2
s x = −

(
eE0

m

)
e−iωt

x = x0e
−iωt

ẋ = −iωx0e
−iωt

ẍ = −ω2x0e
−iωt

(−ω2 − iωΓ + ω2
s )x0e

−iωt = −
(
eE0

m

)
e−iωt

x0 = −
(
eE0

m

)
1

(ω2
s − ω2 − iωΓ)

The amplitude of the response has a resonance and dissipation
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ẍ = −ω2x0e
−iωt

(−ω2 − iωΓ + ω2
s )x0e

−iωt = −
(
eE0

m

)
e−iωt

x0 = −
(
eE0

m

)
1

(ω2
s − ω2 − iωΓ)

The amplitude of the response has a resonance and dissipation

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 November 09, 2021 14 / 27



Forced charged oscillator

Consider an electron under the influence of an os-
cillating electric field E⃗in = x̂E0e

−iωt .

where Γ is the damping constant, ωs is the reso-
nant frequency of the oscillator, and Γ ≪ ωs .

assuming a solution of the form
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ẍ = −ω2x0e
−iωt

(−ω2 − iωΓ + ω2
s )x0e

−iωt = −
(
eE0

m

)
e−iωt

x0 = −
(
eE0

m

)
1

(ω2
s − ω2 − iωΓ)

The amplitude of the response has a resonance and dissipation

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 November 09, 2021 14 / 27



Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional
to the electron’s acceleration with a retarded time t ′ = t − R/c (allowing for the travel time
to the detector).

Erad(R, t) =

(
e

4πϵ0Rc2

)
ẍ(t − R/c) =

(
e

4πϵ0Rc2

)
(−ω2)x0e

−iωte iωR/c

=
ω2

(ω2
s − ω2 − iωΓ)

(
e2

4πϵ0mc2

)
E0e

−iωt

(
e ikR

R

)

Erad(R, t)

Ein
= −r0

ω2

(ω2 − ω2
s + iωΓ)

(
e ikR

R

)
= −r0fs

(
e ikR

R

)

which is an outgoing spherical wave with
scattering amplitude

fs =
ω2

(ω2 − ω2
s + iωΓ)
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ẍ(t − R/c) =

(
e

4πϵ0Rc2

)
(−ω2)x0e

−iωte iωR/c

=
ω2

(ω2
s − ω2 − iωΓ)

(
e2

4πϵ0mc2

)
E0e

−iωt

(
e ikR

R

)

Erad(R, t)

Ein
= −r0

ω2

(ω2 − ω2
s + iωΓ)

(
e ikR

R

)
= −r0fs

(
e ikR

R

)

which is an outgoing spherical wave with
scattering amplitude

fs =
ω2

(ω2 − ω2
s + iωΓ)

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 November 09, 2021 15 / 27



Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional
to the electron’s acceleration with a retarded time t ′ = t − R/c (allowing for the travel time
to the detector).

Erad(R, t) =

(
e

4πϵ0Rc2

)
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Dispersion corrections

The scattering factor can be
rewritten

and since Γ ≪ ωs

the second term being the dis-
persion correction whose real and
imaginary components can be ex-
tracted

fs =
ω2

(ω2 − ω2
s + iωΓ)

= 1 +
ω2
s − iωΓ

(ω2 − ω2
s + iωΓ)

≈ 1 +
ω2
s

(ω2 − ω2
s + iωΓ)

χ(ω) = f ′s + if ′′s

=
ω2
s

(ω2 − ω2
s + iωΓ)

χ(ω) =
ω2
s

(ω2 − ω2
s + iωΓ)

· (ω
2 − ω2

s − iωΓ)

(ω2 − ω2
s − iωΓ)

=
ω2
s (ω

2 − ω2
s − iωΓ)

(ω2 − ω2
s )

2 + (ωΓ)2

f ′s =
ω2
s (ω

2 − ω2
s )

(ω2 − ω2
s )

2 + (ωΓ)2

f ′′s = − ω2
sωΓ

(ω2 − ω2
s )

2 + (ωΓ)2
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Single oscillator dispersion terms

These dispersion terms give resonant correc-
tions to the scattering factor

f ′s=
ω2
s (ω

2 + ω2
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Total cross-section

The total cross-section for scattering from a free
electron is

for an electron bound to an atom, we can now
generalize

this shows a frequency dependence with a peak at
ω ≈ ωs

if ω ≪ ωs and when Γ → 0, the cross-section
becomes

σT =

(
8π

3

)(
ω

ωs

)4
r20

when ω ≫ ωs , σT → σfree
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3

)
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Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray
interaction with matter.

Thus the resonant response we have seen in scattering must be
manifested in the index of refraction as well.

the electric field from the x-rays, E⃗ (t), induces
a polarization response, P⃗(t), in the material,
where χ = (ϵ/ϵ0 − 1)
is the electric susceptibility

given an electron density ρ and using the dis-
placement function for the electrons in the
forced oscillator model

index of refraction can thus be computed

P⃗(t) = ϵ0χE⃗ (t) = (ϵ− ϵ0)E⃗ (t) = −eρx(t)

= −eρ
(
− e

m

) E0e
−iωt

(ω2
s − ω2 − iωΓ)

P(t)

E (t)
= ϵ− ϵ0 =

(
e2ρ

m

)
1

(ω2
s − ω2 − iωΓ)

n2 =
c2

v2
=

ϵ

ϵ0
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Scattering and refraction are alternative ways to approach the phenomenon of x-ray
interaction with matter. Thus the resonant response we have seen in scattering must be
manifested in the index of refraction as well.

the electric field from the x-rays, E⃗ (t), induces
a polarization response, P⃗(t), in the material,
where χ = (ϵ/ϵ0 − 1)
is the electric susceptibility

given an electron density ρ and using the dis-
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Absorption cross-section

Electrons in atoms are bound and there-
fore have resonant effects due to the binding
forces

the imaginary part of the resonant scattering
for an electron bound to an atom shows a
frequency dependence with a peak at ω ≈ ωs

this single oscillator model, however, does
not reproduce the observed absorption cross-
section jump at an absorption edge

σa,s(ω) = 4πr0c
ω2
s Γ

(ω2 − ω2
s )

2 + (ωΓ)2

f ′′s (ω) =
ω2
sωΓ

(ω2 − ω2
s )

2 + (ωΓ)2
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Multi-oscillator model

The damping constant, Γ is generally much
less than the resonant frequency, ωs

thus the single oscillator is essentially a delta
function

in a real atom, exceeding the absorption
edge allows the electron to be excited into a
continuum of states which can be approxi-
mated by a sum of resonant oscillators with
frequency distribution g(ωs)

σa(ω) = 2π2r0c
∑
s

g(ωs)δ(ω − ωs)

a similar effect is seen in the resonant scat-
tering term f ′(ω)

σa,s(ω) = 4πr0c
ω2
s Γ

(ω2 − ω2
s )

2 + (ωΓ)2

≈4πr0c
π

2
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Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections.

However, if it is possible to obtain the experimental absorption cross-section, σa, the resonant
scattering can be computed.

first compute f ′′(ω) from the measured absorp-
tion cross-section

f ′′(ω) = −
(

ω

4πr0c

)
σa(ω)

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

f ′(ω) =
1

π
P
∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)
dω′

f ′′(ω) = − 1

π
P
∫ +∞

−∞

f ′(ω′)

(ω′ − ω)
dω′

where the P indicates a “principal value” integral
computed by integrating from −∞ to (ω − ϵ) and
from (ω + ϵ) to +∞ and then sending ϵ → 0

The Kramers-Kronig relations are derived using
Cauchy’s theorem to integrate a function with a pole
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More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by (ω′ + ω)

and
noting that f ′′ is odd and f ′ is even
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Computing f ′

Starting with the Kramers-Kronig relation for f ′

and recalling that f ′′ is directly related to the
absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞

0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′

= − 2

π

1

4πr0c
P
∫ ∞

0

ω′2σa(ω
′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K absorption edge
and a substitution is made with x = ω′/ωK and
xK = ω/ωK , f

′ becomes

assuming that σa is zero below ωK and varies as
ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x
−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞

0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞

1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s elec-
trons
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Computing f ′

f ′(ω) = −2ωKσa(1)

4πr0c
P
∫ ∞

1

1

x(x2 − x2K )
dx , xK =

ω

ωK

For 2 1s electrons and doing the integral gives

σa(1) = 2

(
256π

3e4

)
λK r0

f ′(ω) =
3.13

2x2K
Re

{
ln(1− z2)

}
where z = xK + iη includes the core hole broaden-
ing parameter, η

at high energies (xK → ∞) this dispersion cor-
rection vanishes as expected and at low energies
(xK , q → 0) the correction is −1.565, thereby par-
tially quenching the scattering from the two 1s
electrons
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Self-consistent cross-section calculations

More accurate calculations of the resonant correc-
tions to the scattering factor can be made using a
full quantum mechanical treatment

The simple model, however, reproduces the main
features of the Ar K-edge

Even for Kr, the K-edge resonance is similar to the
simple calculation

What is lacking, even in the more sophisticated
calcuations, are the resonances near the absorption
edges due to XANES, EXAFS and other localized
resonance phenomena
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