
Today’s outline - November 02, 2021

• In situ studies of methaol fuel cells

• Reversibility in tin-based anode materials

• Angle Resolved Photoemission

• HAXPES

Reading Assignment: Chapter 8.1–8.3

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, November 16, 2021

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Tuesday, November 30, 2021
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Mark I operando fuel cell

• Transmission mode

• Pt/Ru on anode

• 35◦C operating temp

• <1mm of graphite

• Pd on cathode

• 1-2min scan time

R. Viswanathan et al., “In-situ XANES study of carbon supported Pt-Ru anode electrocatalysts for reformate-air polymer electrolyte fuel cells,” J. Phys. Chem. B
106, 3458 (2002).
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Mark II operando fuel cell

• Air-breathing cathode

• 1.2mg/cm2 loading

• Pt L3 and Ni K edges

• Pd on anode

• 50◦C operating temp

• Continuous scan mode

E.A. Lewis et al., “Operando x-ray absorption and infrared fuel cell spectroscopy”, Electrochim. Acta. 56, 8827 (2011).
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Oxygen reduction at a PtNi cathode

U.S. Department of Defense (DoD) Fuel Cell Test and Evaluation
Center (FCTec)

Anode: 0 V vs. SHE

2H2 −−→ 4H+ + 4 e–

Cathode: 1.23V vs. SHE

O2 + 4H+ + 4 e– −−→ 2H2O

breaking O−O bond is the rate limiting step
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Fuel cell performance and open questions
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PtNi/Pd has higher open circuit voltage, similar
performance to Pt/Pd.

Why is ORR improved with bimetallic catalyst?

• Pt electronic structure modified

• Pt catalyst geometric structure modified

• Static oxygen adsorbates inhibited

• Overpotential reduced

Using XAS to study the catalyst nanoparticles can
help answer the first three questions
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Pt/C and PtNi/C comparison
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At highest potential, all cata-
lysts are metallic and the Pt L3
XANES shows significant differ-
ence between the Pt and PtNi
catalysts

Delta XANES shows a supres-
sion of Pt oxidation in the PtNi
catalyst as a function of applied
potential

Q. Jia et al, “In Situ XAFS studies of the oxy-
gen reduction reaction on carbon supported Pt and
PtNi(1:1) catalysts”, J. Phys. Conf. Series 190,
012157 (2009).
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PtNi structural model

Attempt to get global information about the oxygen

Fit all potentials with same metal core parameters for each catalyst

Simultaneous fit of Pt and Ni edges in PtNi/C with constraint on Pt-Ni distance

Fit in k, k2, and k3 weighting simultaneously

Apply M-O path constraints

• length common across potentials

• σ2 fixed to 0.01

• Pt-O in PtNi/C at all potentials are refined with a common occupation #
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Example fits
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Pt in Pt/C

Pt in PtNi/C

Ni in PtNi/C

Ni-O

Pt-O

Pt-O

Fits out to 3.5 Å in R-space and back
Fourier Transforms

The Pt catalyst shows a larger oxygen
path contribution than the PtNi cat-
alyst

The Ni EXAFS is dominated by the
presence of a significant Ni-O bond

“In Situ XAFS studies of the oxygen reduction reaction on carbon
supported Pt and PtNi(1:1) catalysts”, Q. Jia, E.A. Lewis, E.S.
Smotkin, and C.U. Segre, J. Phys. Conf. Series 190, 012157
(2009).
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supported Pt and PtNi(1:1) catalysts”, Q. Jia, E.A. Lewis, E.S.
Smotkin, and C.U. Segre, J. Phys. Conf. Series 190, 012157
(2009).
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Fit results

Pt/C PtNi/C

Pt Ni

NPt 8.7± 0.2 NPt 6.1± 0.3 NNi 3.7± 0.2

RPt-Pt 2.749± 0.001 RPt-Pt 2.692± 0.003 RNi-Ni 2.572± 0.006

NNi 3.4± 0.1 NPt 8.9± 0.5

RPt-Ni 2.635± 0.004

NTotal 9.5± 0.4 NTotal 12.6± 0.7

RPt-O 2.02± 0.01 RPt-O 2.09± 0.03 RNi-O 1.90± 0.01

Note the Pt-Pt and Pt-O bond lengths as well as total metal near neighbors

“In Situ XAFS studies of the oxygen reduction reaction on carbon supported Pt and PtNi(1:1) catalysts”, Q. Jia, E.A. Lewis, E.S. Smotkin, and C.U. Segre, J.
Phys. Conf. Series 190, 012157 (2009).
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Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 November 02, 2021 10 / 37



Ru-decorated Pt nanoparticles
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Electrochemical performance
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Dip at ∼0.5 V is oxygen stripping
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Continual current growth is due to methanol
oxidation

Ru improves current by removing the CO which
blocks active sites

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation
mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J.
Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C
117, 18904 (2013).
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Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C
117, 18904 (2013).
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Ru EXAFS
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“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J.
Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904 (2013).
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Fit example: -225 mV without methanol
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“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J.
Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904 (2013).
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Fit example: 675 mV without methanol

0 1 2 3 4 5 6 7 8 9 10 11

R [Å]

-0.5

0

0.5

1
k2 χ

(k
) 

[Å
-2

]

675 mV - no MeOH

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

675 mV - no MeOH

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J.
Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904 (2013).
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Fit example: 675 mV with methanol
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Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904 (2013).
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Ru-M paths
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“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxida-
tion mechanisms on model submonolayer Ru on Pt nanoparticle electrocat-
alyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre,
J. Phys. Chem. C 117, 18904 (2013).
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“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxida-
tion mechanisms on model submonolayer Ru on Pt nanoparticle electrocat-
alyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre,
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Ru-O/C paths
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“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxida-
tion mechanisms on model submonolayer Ru on Pt nanoparticle electrocat-
alyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre,
J. Phys. Chem. C 117, 18904 (2013).
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Bi-functional mechanism

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J.
Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904 (2013).

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 November 02, 2021 19 / 37



In situ lithiation of Sn anode

• In situ He-filled box for
non-aqueous battery
experiments

• Anode materials measured
include: Sn3O2(OH)2, SnO2,
Sn, ZnO, MoO2 . . .

• Pouch cell simplifies experiment

• MRCAT 10-ID beam line scans EXAFS spectrum in 2 minutes

• Focus on Sn nanoparticles which have rapid failure rate

• Develop modeled Sn-Li paths in Sn3O2(OH)2 using 3 composite paths
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Initial in situ Sn-based anode EXAFS
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degradation progresses

“In situ XAS study of the capacity fading mechanism in hybrid Sn3O2(OH)2/graphite battery anode nanomaterials,” C.J. Pelliccione, E.V. Timofeeva, and C.U.
Segre, Chem. Mater. 27, 574-580 (2015).
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Initial in situ Sn-based anode EXAFS
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“In situ XAS study of the capacity fading mechanism in hybrid Sn3O2(OH)2/graphite battery anode nanomaterials,” C.J. Pelliccione, E.V. Timofeeva, and C.U.
Segre, Chem. Mater. 27, 574-580 (2015).
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Sn nanoparticles – EXAFS versus potential
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“Potential-resolved in situ x-ray absorption spectroscopy study of Sn and SnO2 nanomaterial anodes for lithium-ion batteries,” C.J. Pelliccione, E.V. Timofeeva,
and C.U. Segre, J. Phys. Chem. C 120, 5331-5339 (2016).
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Sn nanoparticles – EXAFS versus potential
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The Sn lithiation process
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“Potential-resolved in situ x-ray absorption spectroscopy study of Sn and SnO2 nanomaterial anodes for lithium-ion batteries,” C.J. Pelliccione, E.V. Timofeeva,
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Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with graphite
to obtain composite
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Sn4P3/graphite composite shows stable, re-
versible capacity of 610 mAh/g for 100 cy-
cles at C/2 compared to rapidly fading pure
Sn4P3 material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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In situ EXAFS of Sn4P3/graphite
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Results for in situ coin cell are close to the capacity of the unmodified cell at C/4, indicating
good reversibility by the 3rd cycle.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Third cycle comparison
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Even at the 100th delithiation, the Sn4P3/graphite composite measured ex situ is showing the
same features as at the 3rd cycle.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Example fits

Fit EXAFS for bond lengths and co-
ordination numbers
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The Sn-O peak at OCV is due to ball
milling, which introduces oxygen.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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By the 3rd lithiated state, the EXAFS
is dominated by Sn-Li paths at 2.7
Å and 3.0 Å.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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At the 3rd delithiation, the Sn-P path
reappears but at a shorter distance, in
an amorphous SnPx phase.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U.
Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Sn-O distances remain constant, likely in-
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Sn4P3/graphite coordination numbers
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state indicate a possibly tetrahedral Sn co-
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Third cycle dynamic snapshot
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The photoemission process

ϕ = Ev − EF

Photoemission is the complement to XAFS. It
probes the filled states below the Fermi level

The dispersion relation of electrons in a solid, E(q⃗)
can be probed by angle resolved photoemission
since both the kinetic energy, Ekin, and the an-
gle, θ are measured

Ekin, θ −→ E(q⃗)
The core levels are tightly bound at an energy EC
below the Fermi level

The work function, ϕ, is the minimum energy re-
quired to promote an electron from the top of the
valence band at the Fermi energy, EF , to the vac-
uum energy, Ev
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The photoemission process

With the incident photon energy, ℏω, held con-
stant, an analyzer is used to measure the kinetic
energy, Ekin, of the photoelectrons emitted from
the surface of the sample

if Ei is the initial energy of the electron, the binding
energy, EB is

EB = EF − Ei
and the measured kinetic energy gives the binding
energy

Ekin =
ℏ2q2v
2m

= ℏω − ϕ− EB
the maximum kinetic energy measured is thus re-
lated to the Fermi energy

the core states are used to fingerprint the chemical
composition of the sample
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Hemispherical mirror analyzer

The electric field between the two hemi-
spheres of radius R1 and R2 has a R

2 depen-
dence from the center of the hemispheres

Electrons with E0, called the “pass energy”,
will follow a circular path of radius

R0 = (R1 + R2)/2

Electrons with lower energy will fall inside
this circular path while those with higher en-
ergy will fall outside

Electrons with different azimuthal exit an-
gles ω will map to different positions on the
2D detector
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Photoelectron momentum

The total momentum of the photoelectron is cal-
culated from the measured kinetic energy

since the momentum of the electron parallel to the
surface must be conserved, the original momentum
of the electron can be computed from the polar an-
gle of the sample to the detector and the azimuthal
angle measured on the 2D detector

the perpendicular component of the original mo-
mentum can be obtained by assuming a free elec-
tron and measuring the inner potential, V0 at
θ = 0

the electron dispersion curve can be fully mapped
by sample rotations

ω

θ

ℏqe =
√

2mEkin
ℏq∥x = ℏqe sin θ cosω
ℏq∥y = ℏqe sin θ sinω

ℏq⊥ =
√

2m(Ekin cos2 θ + V0)
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ARPES experimental data
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ARPES experimental data
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HAXPES

Photoemission spectroscopy is generally used for surface sensitive measurements because of
the low energy of the incident photons (< 2 keV)
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Si 2p in Si High energy synchrotrons offer the
opportunity to use hard x-ray photo-
electron spectroscopy (HAXPES)

HAXPES advantages include

measurement of K edges of 3d ele-
ments, L edges of 5d elements, and
M edges of 5f elements

ability to measure bulk photoemission
and buried interfaces as well as the
surface
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