
Today’s outline - October 28, 2021

• EXAFS theory

• Local structure of nanoferritic alloy steels

• In situ studies of methanol fuel cells

Reading Assignment: Chapter 7.4

Homework Assignment #05:
Chapter 5: 1,3,7,9,10
due Tuesday, November 02, 2021

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, November 16, 2021
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X-ray absorption by a free atom
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Absorbing Atom

Absorption
Probability

X-ray absorption needs an available state for
the photoelectron to go into

No available state, no absorption

Once the x-ray energy is large enough to pro-
mote a core-level to the continuum, there is a
sharp increase in absorption.

µ(E ) has a sharp step at the core-level bind-
ing energy, and is a smooth function of energy
above this absorption edge.

An atom absorbs an x-ray of energy E , destroying a core electron with energy E0 and creating
a photoelectron with energy (E − E0). The core hole is eventually filled, and a fluorescence
x-ray or Auger electron is ejected from the atom.
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X-ray absorption with photoelectron scattering
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Absorbing Atom

Absorption
ProbabilityScattering Atom

With another atom nearby, the ejected photo-
electron can scatter from a neighboring atom
and return back to the absorbing atom

In the XANES region µ(E ) depends on the den-
sity of electron states with energy (E − E0), at
the absorbing atom with the appropriate sym-
metry (∆l = ±1, ∆m = 0,±1)

In the EXAFS region, the backscattered photo-
electron will interfere with itself

The amplitude and phase of the back-scattered photoelectron at the absorbing atom will vary
with energy, causing the oscillations in µ(E )
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X-ray absorption: Fermi’s golden rule
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ProbabilityScattering Atom

µ(E ) = µ0(E ) + ∆µ(E )

= µ0(E )[1 + χ(E )]

χ(k[E ]) =
µ(E )− µ0(E )

µ0(E )
, k =

√
2m(E − E0)

ℏ2

µ(E ) ∼ |⟨i |H|f ⟩|2

⟨i | is the initial state which has a core level
electron and the photon. This is not altered by
the neighboring atom.

H is the interaction. In the dipole approxima-
tion, H = e ikr ≈ 1.

|f ⟩ is the final state which has a photoelectron, a hole in the core, and no photon. This is
altered by the neighboring atom: the photoelectron scatters.
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µ and χ and the photoelectron wavefunction

Writing |f ⟩ = |f0 +∆f ⟩, where ∆f gives the change in photoelectron final state due to
backscattering from the neighboring atom, we can expand µ to get

µ(E ) ∼ |⟨i |H|f ⟩|2 = ⟨i |H|f0 +∆f ⟩⟨f0 +∆f |H|i⟩
≈ ⟨i |H|f0⟩⟨f0|H|i⟩+ ⟨i |H|f0⟩⟨∆f |H|i⟩+ ⟨i |H|∆f ⟩⟨f0|H|i⟩+ · · ·
= |⟨i |H|f0⟩|2 + ⟨i |H|f0⟩⟨∆f |H|i⟩+ ⟨i |H|∆f ⟩⟨f0|H|i⟩

= |⟨i |H|f0⟩|2
[
1 +

⟨i |H|f0⟩⟨∆f |H|i⟩
|⟨i |H|f0⟩|2

+
⟨i |H|∆f ⟩⟨f0|H|i⟩

|⟨i |H|f0⟩|2
]

Compare this to µ(E ) = µ0(E )[1 + χ(E )] and we see that

µ0(E ) ∼ |⟨i |H|f0⟩|2
χ(E ) ∼ ⟨i |H|∆f ⟩ ∼ ⟨i |∆f ⟩

atomic background

XAFS oscillations

χ(E ) ∼ ⟨i |∆f ⟩ ∼
∫
ψcoreψscatt(r) dr ∼

∫
δ(r)ψscatt(r) dr = ψscatt(0)
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Computing the scattered wavefunction

E
0

E
n

e
rg

y

Absorbing Atom

Absorption
ProbabilityScattering Atom

Assume that emitted photoelectron is a spher-
ical wave

ψ(k , r) =
e ikr

kr

follow the electron as it:

a. leaves the absorbing atom

b. scatters from the neighbor atom

c. returns to the absorbing atom

χ(k) ∼ ψscatt(0) =
e ikR

kR
[2kf (k)e iδ(k)]

e ikR

kR
=

2e i(2kR+δ(k))

kR2
f (k)

where scattering from the neighboring atom gives the amplitude f (k) and phase-shift δ(k) to
the photoelectron
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χ(k) ∼ ψscatt(0) =
e ikR

kR
[2kf (k)e iδ(k)]

e ikR

kR
=

2e i(2kR+δ(k))

kR2
f (k)

where scattering from the neighboring atom gives the amplitude f (k) and phase-shift δ(k) to
the photoelectron
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Development of the EXAFS equation

Including the complex conjugate,

and simplifying

χ(k) ∼ 2f (k)

kR2

[
e i(2kR+δ(k)) + e−i(2kR+δ(k))

]
=

f (k)

kR2
cos [2kR + δ(k)]

incorporating an additional π/2 phase shift, we have the EXAFS equation for one scattering
atom

χ(k) =
f (k)

kR2
sin [2kR + δ(k)] −→ χ(k) =

Nf (k)e−2k2σ2

kR2
sin [2kR + δ(k)]

for N neighboring atoms, and with thermal and static disorder of σ2 giving the mean-square
disorder in R, we have

a real system has atoms at different distances and of different types so all these contributions
are summed to get a better version of the EXAFS equation:

χ(k) =
∑
j

Nj fj(k)e
−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]
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Scattering amplitude and phase shift: f (k) and δ(k)

The scattering amplitude f (k) and phase-shift
δ(k) depend on atomic number

The scattering amplitude f (k) peaks at differ-
ent k values and extends to higher-k for heav-
ier elements. For very heavy elements, there is
structure in f (k)

The phase shift δ(k) shows sharp changes for
very heavy elements

These functions can be calculated accurately
(say with the program FEFF) for modeling EX-
AFS

Z can usually be determined to ±5. Fe and O
can be distinguished, but Fe and Mn cannot be
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k (Å−1)

δ
(k
)

20151050

2

0

-2

-4

-6

-8

-10

-12

-14

-16

-18

-20

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 28, 2021 8 / 23



Scattering amplitude and phase shift: f (k) and δ(k)

The scattering amplitude f (k) and phase-shift
δ(k) depend on atomic number

The scattering amplitude f (k) peaks at differ-
ent k values and extends to higher-k for heav-
ier elements. For very heavy elements, there is
structure in f (k)

The phase shift δ(k) shows sharp changes for
very heavy elements

These functions can be calculated accurately
(say with the program FEFF) for modeling EX-
AFS

Z can usually be determined to ±5. Fe and O
can be distinguished, but Fe and Mn cannot be

Pb

O

Fe

k (Å−1)
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(Å

)

20151050

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Pb

O
Fe

k (Å−1)
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k (Å−1)

f(
k
)
(Å
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The EXAFS equation: What we left out

This simple description is qualitatively right, but for quantitative EXAFS calculations, it’s
important to consider these points:

Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of
the core-hole.

multiple scattering the photoelectron can scatter from multiple atoms. Most important at low
k, and leads to a path expansion.

Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a
muffin-tin approximation is most tractable.

Polarization Effects synchrotron beams are highly polarized, which needs to be taken into
account. This is simple for K -edges (s → p is dipole), and less so for L-edges
(where both p → d and p → s contribute).

Disorder Terms thermal and static disorder in real systems should be properly considered: A
topic of its own.

Generally, the calculations (FEFF, etc) include these effects. We’ll discuss of few of these in
more detail . . .
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The photoelectron mean-free path

χ(k) =
∑
j

Nj fj(k)e
−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a
spherical wave, ψ(k , r) ∼ e ikr/kr

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence
and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

Using a damped wavefunction instead ψ(k, r) ∼ e ikre−r/λ(k)

kr

where λ(k) is the photoelectron’s mean free path (including core-hole lifetime), the EXAFS
equation becomes:

χ(k) =
∑
j

Nj fj(k)e
−2Rj/λ(k)e−2k2σ2

j

kRj
2

sin[2kRj + δj(k)]
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The photoelectron mean-free path

λ is mostly independent of the system, but depends strongly on k :

k (Å−1)

λ
(k
)
(Å

)

20151050

50

45

40

35

30

25

20

15

10

5

for 3 Å−1 < k < 15 Å−1,
λ < 30 Å

along with the R−2 term this
makes EXAFS a local atomic
probe

for XANES (k < 3 Å−1), both λ
and R−2 become large: making
XANES not really a local probe
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k (Å−1)

λ
(k
)
(Å
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along with the R−2 term this
makes EXAFS a local atomic
probe

for XANES (k < 3 Å−1), both λ
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and R−2 become large: making
XANES not really a local probe

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 28, 2021 11 / 23



The photoelectron mean-free path

λ is mostly independent of the system, but depends strongly on k :

k (Å−1)
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S2
0 : Amplitude reduction term

Another important amplitude reduction term is due to the relaxation of the other electrons in
the absorbing atom to the hole in the core level:

S2
0 = |⟨ΦN−1

f |ΦN−1
0 ⟩|2

|ΦN−1
0 ⟩ = (N − 1) – electrons in unexcited atom

⟨ΦN−1
f | = (N − 1) – electrons, relaxed by core-hole

S2
0 is usually taken as a constant:

0.7 < S2
0 < 1.0

and is used as a fitting parameter that multiplies χ:

S2
0 is completely correlated with N (!!!)

This, and other experimental and theoretical issues, make EXAFS amplitudes (and therefore
N) less precise than EXAFS phases (and therefore R)
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The EXAFS equation

The full EXAFS equation can be used to model and interpret experimental data

χ(k) =
∑
j

NjS
2
0 fj(k)e

−2Rj/λ(k) e−2k2σ2
j

kRj
2

sin [2kRj + δj(k)]

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or . . .
. . . over possible scattering paths (preferred) of the photoelectron.

Nj : path degeneracy

Rj : half path length

σ2j : path “disorder”

S2
0 : amplitude reduction factor

k is the photoelectron wave number

fj(k): scattering factor for the path

δj(k): phase shift for the path

λ(k): photoelectron mean free path

Because we can compute f (k) and δ(k), and λ(k) we can determine Z, R, N, and σ2 for
scattering paths to neighboring atoms by fitting the data.
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Sum over paths and multiple scattering

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from
more than one atom before returning to the absorbing atom:

Single Scattering

Focussed Multiple Scattering Paths

Triangle Paths For multi-bounce paths, the total amplitude depends on the
angles in the photoelectron path

Triangle Paths with angles 45◦ < θ < 135◦ aren’t strong, but
there can be a lot of them

Linear paths, with angles θ ≈ 180◦, are very strong: the pho-
toelectron can be focused through one atom to the next
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Advantages of nanoferritic alloy (NFA) steels

High density nanofeatures (NFs) and dislocations pro-
vide irradiation damage resistance

NFs trap helium in fine bubbles and prevent accumu-
lation of high concentrations

NFs maintain high stable sink densities for vacancy
and self-interstitial atom defect annihilation

NFs maintain high creep strength because of dislo-
cation pinning, allowing operation at temperatures
above the displacement damage regime

G.R. Odette, M.J. Alinger, and B.D. Wirth, Annu. Rev. Mater. Res. 38, 471–503 (2008).

NF
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Fabrication of NFA steels

G.R. Odette, M.J. Alinger, and B.D.Wirth, Annu. Rev. Mater. Res. 38, 471–503 (2008).Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 28, 2021 16 / 23



Atom probe tomography data

After mechanical alloying, Cr, Ti and Y are uniformly
distributed throughout the solid

Consolidated materials show Ti-O and Y to be pri-
marily co-localized in nanoclusters

Use XAS to understand the local structure of these
nanoclusters

C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, Acta Materi-
alia 61, 2219–2235 (2013).
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Samples studied

Sample name Composition (wt %) Processing

Cr Ti Mo W Y2O3

MA957 14 1 0.3 0.3 hot extruded @ 1150◦C

J12YWT 12 0.4 3 0.25 hot extruded @ 1150◦C

as received 14 0.4 3 as received powder

as milled 14 0.4 3 0.25 mechanically alloyed powder

850◦C 14 0.4 3 0.25 powder annealed @ 850◦C

1000◦C 14 0.4 3 0.25 powder annealed @ 1000◦C

1150◦C 14 0.4 3 0.25 powder annealed @ 1150◦C

Samples consolidated from as milled powder by hot isostatic pressing were shown to be
identical to annealed powders and are thus not discussed.
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Yttrium edge data
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Titanium edge data
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∼ 2.6Å 0 2 4 6

R (Å)

0

20

40

60

80

100

|k
3 χ

(R
)|

 (
Å

-4
)

850°C

1000°C

1150°C

as milled

as received

MA957

J12YWT

Y2TiO5

Y2Ti2O7

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 28, 2021 20 / 23



Ti in BCC structure
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Ti in TiO structure

Annealed powders have a remarkable resemblance to
the cubic TiO calculated spectrum
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The fate of Ti

Commercial steels retain Ti in a metallic BCC lattice
for the most part

Annealed powders all have mixture of TiO-like struc-
ture and more complex oxides (∼ 50% each)

TiO cubic suboxide is stabilized on the surface of the
Y–Ti–O nanoclusters

Presence of this metastable cubic TiO suggests sig-
nificant fraction of Ti on the surface of Y–Ti–O NFs

TiO1-x

Y2TiO5

Y2Ti2O7

or

“Evidence for core-shell nanoclusters in oxygen dispersion
strengthened steels measured using x-ray absorption spec-
troscopy,” S. Liu, G.R. Odette, and C.U. Segre, J. Nucl.
Mater. 445, 50-56 (2014).
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