

• EXAFS theory

- EXAFS theory
- Local structure of nanoferritic alloy steels

- EXAFS theory
- Local structure of nanoferritic alloy steels
- In situ studies of methanol fuel cells

- EXAFS theory
- Local structure of nanoferritic alloy steels
- In situ studies of methanol fuel cells

Reading Assignment: Chapter 7.4

- EXAFS theory
- Local structure of nanoferritic alloy steels
- In situ studies of methanol fuel cells

Reading Assignment: Chapter 7.4

Homework Assignment #05: Chapter 5: 1,3,7,9,10 due Tuesday, November 02, 2021

- EXAFS theory
- Local structure of nanoferritic alloy steels
- In situ studies of methanol fuel cells

Reading Assignment: Chapter 7.4

Homework Assignment #05: Chapter 5: 1,3,7,9,10 due Tuesday, November 02, 2021 Homework Assignment #06: Chapter 6: 1,6,7,8,9 due Tuesday, November 16, 2021

X-ray absorption needs an available state for the photoelectron to go into

Carlo Segre (Illinois Tech)

X-ray absorption needs an available state for the photoelectron to go into

No available state, no absorption

X-ray absorption needs an available state for the photoelectron to go into

No available state, no absorption

Once the x-ray energy is large enough to promote a core-level to the continuum, there is a sharp increase in absorption.

X-ray absorption needs an available state for the photoelectron to go into

No available state, no absorption

Once the x-ray energy is large enough to promote a core-level to the continuum, there is a sharp increase in absorption.

 $\mu(E)$ has a sharp step at the core-level binding energy, and is a smooth function of energy above this absorption edge.

X-ray absorption needs an available state for the photoelectron to go into

No available state, no absorption

Once the x-ray energy is large enough to promote a core-level to the continuum, there is a sharp increase in absorption.

 $\mu(E)$ has a sharp step at the core-level binding energy, and is a smooth function of energy above this absorption edge.

An atom absorbs an x-ray of energy E, destroying a core electron with energy E_0 and creating a photoelectron with energy $(E - E_0)$. The core hole is eventually filled, and a fluorescence x-ray or Auger electron is ejected from the atom.

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2021

With another atom nearby, the ejected photoelectron can scatter from a neighboring atom and return back to the absorbing atom

With another atom nearby, the ejected photoelectron can scatter from a neighboring atom and return back to the absorbing atom

With another atom nearby, the ejected photoelectron can scatter from a neighboring atom and return back to the absorbing atom

In the XANES region $\mu(E)$ depends on the density of electron states with energy $(E - E_0)$, at the absorbing atom with the appropriate symmetry ($\Delta I = \pm 1$, $\Delta m = 0, \pm 1$)

With another atom nearby, the ejected photoelectron can scatter from a neighboring atom and return back to the absorbing atom

In the XANES region $\mu(E)$ depends on the density of electron states with energy $(E - E_0)$, at the absorbing atom with the appropriate symmetry ($\Delta I = \pm 1$, $\Delta m = 0, \pm 1$)

In the EXAFS region, the backscattered photoelectron will interfere with itself

With another atom nearby, the ejected photoelectron can scatter from a neighboring atom and return back to the absorbing atom

In the XANES region $\mu(E)$ depends on the density of electron states with energy $(E - E_0)$, at the absorbing atom with the appropriate symmetry ($\Delta I = \pm 1$, $\Delta m = 0, \pm 1$)

In the EXAFS region, the backscattered photoelectron will interfere with itself

The amplitude and phase of the back-scattered photoelectron at the absorbing atom will vary with energy, causing the oscillations in $\mu(E)$

$$\mu(E) = \mu_0(E) + \Delta \mu(E)$$

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2021

October 28, 2021

4 / 23

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)},$$

Carlo Segre (Illinois Tech)

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}, \quad k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$

Carlo Segre (Illinois Tech)

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}, \quad k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$
$$\mu(E) \sim |\langle i|\mathcal{H}|f \rangle|^2$$

Carlo Segre (Illinois Tech)

4 / 23

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}, \quad k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$
$$\mu(E) \sim |\langle i|\mathcal{H}|f \rangle|^2$$

 $\langle i |$ is the initial state which has a core level electron and the photon. This is not altered by the neighboring atom.

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}, \quad k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$
$$\mu(E) \sim |\langle i|\mathcal{H}|f\rangle|^2$$

 $\langle i |$ is the initial state which has a core level electron and the photon. This is not altered by the neighboring atom.

 ${\cal H}$ is the interaction. In the dipole approximation, ${\cal H}=e^{ikr}\approx 1.$

$$\mu(E) = \mu_0(E) + \Delta \mu(E) = \mu_0(E)[1 + \chi(E)]$$
$$\chi(k[E]) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E)}, \quad k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$
$$\mu(E) \sim |\langle i|\mathcal{H}|f \rangle|^2$$

 $\langle i |$ is the initial state which has a core level electron and the photon. This is not altered by the neighboring atom.

 ${\cal H}$ is the interaction. In the dipole approximation, ${\cal H}=e^{ikr}\approx 1.$

 $|f\rangle$ is the final state which has a photoelectron, a hole in the core, and no photon. This is altered by the neighboring atom: the photoelectron scatters.

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

 $\mu(E) \sim |\langle i | \mathcal{H} | f \rangle|^2$

$$\mu(E) \sim |\langle i | \mathcal{H} | f \rangle|^2 = \langle i | \mathcal{H} | f_0 + \Delta f \rangle \langle f_0 + \Delta f | \mathcal{H} | i \rangle$$

$$\mu(E) \sim |\langle i|\mathcal{H}|f
angle|^2 = \langle i|\mathcal{H}|f_0 + \Delta f
angle \langle f_0 + \Delta f|\mathcal{H}|i
angle \ pprox \langle i|\mathcal{H}|f_0
angle \langle f_0|\mathcal{H}|i
angle$$

$$\mu(E) \sim |\langle i|\mathcal{H}|f
angle|^2 = \langle i|\mathcal{H}|f_0 + \Delta f
angle \langle f_0 + \Delta f|\mathcal{H}|i
angle \ pprox \langle i|\mathcal{H}|f_0
angle \langle f_0|\mathcal{H}|i
angle + \langle i|\mathcal{H}|f_0
angle \langle \Delta f|\mathcal{H}|i
angle$$

$$egin{aligned} &\mu(E)\sim |\langle i|\mathcal{H}|f
angle|^2 = \langle i|\mathcal{H}|f_0+\Delta f
angle \langle f_0+\Delta f|\mathcal{H}|i
angle \ &pprox \langle i|\mathcal{H}|f_0
angle \langle f_0|\mathcal{H}|i
angle + \langle i|\mathcal{H}|f_0
angle \langle \Delta f|\mathcal{H}|i
angle + \langle i|\mathcal{H}|\Delta f
angle \langle f_0|\mathcal{H}|i
angle + \cdots \end{aligned}$$

$$\begin{split} u(E) &\sim |\langle i|\mathcal{H}|f\rangle|^2 = \langle i|\mathcal{H}|f_0 + \Delta f\rangle \langle f_0 + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_0\rangle \langle f_0|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_0\rangle|^2 + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle \end{split}$$

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} \iota(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle \langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle \langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

L

5/23

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} u(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle \langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle \langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} u(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle\langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle\langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

 $\mu_0(E) \sim |\langle i | \mathcal{H} | f_0
angle|^2$ atomic background

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} u(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle\langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle\langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

$\mu_0(E) \sim \langle i \mathcal{H} f_0 angle ^2$	atomic background
$\chi(E) \sim \langle i \mathcal{H} \Delta f \rangle$	XAFS oscillations

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} u(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle\langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle\langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

$$\begin{split} \mu_0(E) &\sim |\langle i | \mathcal{H} | f_0 \rangle|^2 & \text{atomic background} \\ \chi(E) &\sim \langle i | \mathcal{H} | \Delta f \rangle \sim \langle i | \Delta f \rangle & \text{XAFS oscillations} \end{split}$$

Carlo Segre (Illinois Tech)

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} \iota(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle\langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle\langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle\langle\Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle\langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

 $\mu_0(E) \sim |\langle i|\mathcal{H}|f_0\rangle|^2$ atomic background $\chi(E) \sim \langle i|\mathcal{H}|\Delta f\rangle \sim \langle i|\Delta f\rangle$ XAFS oscillations

 $\chi(E) \sim \langle i | \Delta f \rangle$

Carlo Segre (Illinois Tech)

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} \iota(E) &\sim |\langle i|\mathcal{H}|f\rangle|^{2} = \langle i|\mathcal{H}|f_{0} + \Delta f\rangle \langle f_{0} + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_{0}\rangle \langle f_{0}|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} + \langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_{0}\rangle|^{2} \left[1 + \frac{\langle i|\mathcal{H}|f_{0}\rangle \langle \Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}} + \frac{\langle i|\mathcal{H}|\Delta f\rangle \langle f_{0}|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_{0}\rangle|^{2}}\right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

$$\begin{split} \mu_0(E) &\sim |\langle i|\mathcal{H}|f_0\rangle|^2 & \text{atomic background} \\ \chi(E) &\sim \langle i|\mathcal{H}|\Delta f\rangle \sim \langle i|\Delta f\rangle & \text{XAFS oscillations} \\ \chi(E) &\sim \langle i|\Delta f\rangle \sim \int \psi_{core}\psi_{\text{scatt}}(r) \, dr \end{split}$$

Carlo Segre (Illinois Tech)

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} \iota(E) &\sim |\langle i|\mathcal{H}|f\rangle|^2 = \langle i|\mathcal{H}|f_0 + \Delta f\rangle \langle f_0 + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_0\rangle \langle f_0|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_0\rangle|^2 + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_0\rangle|^2 \left[1 + \frac{\langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_0\rangle|^2} + \frac{\langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_0\rangle|^2} \right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

$$\begin{split} \mu_0(E) &\sim |\langle i|\mathcal{H}|f_0\rangle|^2 & \text{atomic background} \\ \chi(E) &\sim \langle i|\mathcal{H}|\Delta f\rangle \sim \langle i|\Delta f\rangle & \text{XAFS oscillations} \\ \chi(E) &\sim \langle i|\Delta f\rangle \sim \int \psi_{core}\psi_{\text{scatt}}(r)\,dr \sim \int \delta(r)\psi_{\text{scatt}}(r)\,dr \end{split}$$

Carlo Segre (Illinois Tech)

Writing $|f\rangle = |f_0 + \Delta f\rangle$, where Δf gives the change in photoelectron final state due to backscattering from the neighboring atom, we can expand μ to get

$$\begin{split} \iota(E) &\sim |\langle i|\mathcal{H}|f\rangle|^2 = \langle i|\mathcal{H}|f_0 + \Delta f\rangle \langle f_0 + \Delta f|\mathcal{H}|i\rangle \\ &\approx \langle i|\mathcal{H}|f_0\rangle \langle f_0|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle + \cdots \\ &= |\langle i|\mathcal{H}|f_0\rangle|^2 + \langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle + \langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle \\ &= |\langle i|\mathcal{H}|f_0\rangle|^2 \left[1 + \frac{\langle i|\mathcal{H}|f_0\rangle \langle \Delta f|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_0\rangle|^2} + \frac{\langle i|\mathcal{H}|\Delta f\rangle \langle f_0|\mathcal{H}|i\rangle}{|\langle i|\mathcal{H}|f_0\rangle|^2} \right] \end{split}$$

Compare this to $\mu(E) = \mu_0(E)[1 + \chi(E)]$ and we see that

$$\begin{split} \mu_0(E) &\sim |\langle i|\mathcal{H}|f_0\rangle|^2 & \text{atomic background} \\ \chi(E) &\sim \langle i|\mathcal{H}|\Delta f\rangle \sim \langle i|\Delta f\rangle & \text{XAFS oscillations} \\ \chi(E) &\sim \langle i|\Delta f\rangle \sim \int \psi_{core}\psi_{\text{scatt}}(r)\,dr \sim \int \delta(r)\psi_{\text{scatt}}(r)\,dr = \psi_{\text{scatt}}(0) \end{split}$$

Carlo Segre (Illinois Tech)

Assume that emitted photoelectron is a spherical wave

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r) = \frac{\mathrm{e}^{ikr}}{kr}$$

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{e^{ikr}}{kr}$$

follow the electron as it:

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{e^{ikr}}{kr}$$

follow the electron as it:

a. leaves the absorbing atom

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{\mathrm{e}^{ikr}}{kr}$$

follow the electron as it:

- a. leaves the absorbing atom
- b. scatters from the neighbor atom

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{\mathrm{e}^{ikr}}{kr}$$

follow the electron as it:

- a. leaves the absorbing atom
- b. scatters from the neighbor atom
- c. returns to the absorbing atom

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{e^{ikr}}{kr}$$

follow the electron as it:

- a. leaves the absorbing atom
- b. scatters from the neighbor atom
- c. returns to the absorbing atom

where scattering from the neighboring atom gives the amplitude
$$f(k)$$
 and phase-shift $\delta(k)$ to the photoelectron

Carlo Segre (Illinois Tech)

Assume that emitted photoelectron is a spherical wave

$$\psi(k,r)=\frac{e^{ikr}}{kr}$$

follow the electron as it:

- a. leaves the absorbing atom
- b. scatters from the neighbor atom
- c. returns to the absorbing atom

$$\chi(k) \sim \psi_{scatt}(0) = \frac{e^{ikR}}{kR} [2kf(k)e^{i\delta(k)}] \frac{e^{ikR}}{kR} = \frac{2e^{i(2kR+\delta(k))}}{kR^2} f(k)$$

where scattering from the neighboring atom gives the amplitude $f(k)$ and phase-shift $\delta(k)$ to

the photoelectron

Carlo Segre (Illinois Tech)

6/23

V

Including the complex conjugate,

V

Including the complex conjugate,

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right]$$

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

V

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

7/23

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

$$\chi(k) = rac{f(k)}{kR^2} \sin\left[2kR + \delta(k)
ight]$$

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

$$\chi(k) = rac{f(k)}{kR^2} \sin \left[2kR + \delta(k)
ight]$$

for N neighboring atoms, and with thermal and static disorder of σ^2 giving the mean-square disorder in R, we have

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

$$\chi(k) = \frac{f(k)}{kR^2} \sin\left[2kR + \delta(k)\right] \quad \longrightarrow \quad \chi(k) = \frac{Nf(k)e^{-2k^2\sigma^2}}{kR^2} \sin\left[2kR + \delta(k)\right]$$

for N neighboring atoms, and with thermal and static disorder of σ^2 giving the mean-square disorder in R, we have

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

$$\chi(k) = \frac{f(k)}{kR^2} \sin\left[2kR + \delta(k)\right] \quad \longrightarrow \quad \chi(k) = \frac{Nf(k)e^{-2k^2\sigma^2}}{kR^2} \sin\left[2kR + \delta(k)\right]$$

for N neighboring atoms, and with thermal and static disorder of σ^2 giving the mean-square disorder in R, we have

a real system has atoms at different distances and of different types so all these contributions are summed to get a better version of the EXAFS equation:

V

Including the complex conjugate, and simplifying

$$\chi(k) \sim \frac{2f(k)}{kR^2} \left[e^{i(2kR+\delta(k))} + e^{-i(2kR+\delta(k))} \right] = \frac{f(k)}{kR^2} \cos\left[2kR + \delta(k)\right]$$

incorporating an additional $\pi/2$ phase shift, we have the EXAFS equation for one scattering atom

$$\chi(k) = \frac{f(k)}{kR^2} \sin\left[2kR + \delta(k)\right] \quad \longrightarrow \quad \chi(k) = \frac{Nf(k)e^{-2k^2\sigma^2}}{kR^2} \sin\left[2kR + \delta(k)\right]$$

for N neighboring atoms, and with thermal and static disorder of σ^2 giving the mean-square disorder in R, we have

a real system has atoms at different distances and of different types so all these contributions are summed to get a better version of the EXAFS equation:

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2kR_j + \delta_j(k)]$$

Carlo Segre (Illinois Tech)

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) peaks at different k values and extends to higher-k for heavier elements. For very heavy elements, there is structure in f(k)

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) peaks at different k values and extends to higher-k for heavier elements. For very heavy elements, there is structure in f(k)

PHYS 570 - Fall 2021

8/23

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) peaks at different k values and extends to higher-k for heavier elements. For very heavy elements, there is structure in f(k)

The phase shift $\delta(k)$ shows sharp changes for very heavy elements

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) peaks at different k values and extends to higher-k for heavier elements. For very heavy elements, there is structure in f(k)

The phase shift $\delta(k)$ shows sharp changes for very heavy elements

These functions can be calculated accurately (say with the program FEFF) for modeling EX-AFS

PHYS 570 - Fall 2021

8/23

8/23

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number

The scattering amplitude f(k) peaks at different k values and extends to higher-k for heavier elements. For very heavy elements, there is structure in f(k)

The phase shift $\delta(k)$ shows sharp changes for very heavy elements

These functions can be calculated accurately (say with the program FEFF) for modeling EXAFS

Z can usually be determined to $\pm 5.$ Fe and O can be distinguished, but Fe and Mn cannot be

PHYS 570 - Fall 2021

This simple description is qualitatively right, but for quantitative EXAFS calculations, it's important to consider these points:

Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.

This simple description is qualitatively right, but for quantitative EXAFS calculations, it's important to consider these points:

Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.

multiple scattering the photoelectron can scatter from multiple atoms. Most important at low

k, and leads to a path expansion.

9/23

- Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.
- multiple scattering the photoelectron can scatter from multiple atoms. Most important at low k, and leads to a path expansion.
- Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a muffin-tin approximation is most tractable.

- Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.
- multiple scattering the photoelectron can scatter from multiple atoms. Most important at low k, and leads to a path expansion.
- Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a muffin-tin approximation is most tractable.
- Polarization Effects synchrotron beams are highly polarized, which needs to be taken into account. This is simple for K-edges ($s \rightarrow p$ is dipole), and less so for L-edges (where both $p \rightarrow d$ and $p \rightarrow s$ contribute).

- Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.
- multiple scattering the photoelectron can scatter from multiple atoms. Most important at low k, and leads to a path expansion.
- Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a muffin-tin approximation is most tractable.
- Polarization Effects synchrotron beams are highly polarized, which needs to be taken into account. This is simple for K-edges ($s \rightarrow p$ is dipole), and less so for L-edges (where both $p \rightarrow d$ and $p \rightarrow s$ contribute).
- Disorder Terms thermal and static disorder in real systems should be properly considered: A topic of its own.

9/23

This simple description is qualitatively right, but for quantitative EXAFS calculations, it's important to consider these points:

- Inelastic Losses The photoelectron mean-free path, including self-energy and finite lifetime of the core-hole.
- multiple scattering the photoelectron can scatter from multiple atoms. Most important at low k, and leads to a path expansion.
- Muffin-Tin Approximation: The scattering calculation needs a real-space potential, and a muffin-tin approximation is most tractable.
- Polarization Effects synchrotron beams are highly polarized, which needs to be taken into account. This is simple for K-edges ($s \rightarrow p$ is dipole), and less so for L-edges (where both $p \rightarrow d$ and $p \rightarrow s$ contribute).
- Disorder Terms thermal and static disorder in real systems should be properly considered: A topic of its own.

Generally, the calculations (FEFF, etc) include these effects. We'll discuss of few of these in more detail \ldots

Carlo Segre (Illinois Tech)

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2kR_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

Using a damped wavefunction instead

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

Using a damped wavefunction instead

$$\psi(k,r) \sim rac{e^{ikr}e^{-r/\lambda(k)}}{kr}$$

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

Using a damped wavefunction instead

$$\psi(k,r) \sim \frac{e^{ikr}e^{-r/\lambda(k)}}{kr}$$

where $\lambda(k)$ is the photoelectron's mean free path (including core-hole lifetime), the EXAFS equation becomes:

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2k R_j + \delta_j(k)]$$

The EXAFS equation was obtained by approximating the photoelectron wavefunction by a spherical wave, $\psi(k, r) \sim e^{ikr}/kr$

But the interference that gives rise to EXAFS requires that the wavefunction retain coherence and inelastic scattering and the finite lifetime of the core-hole can destroy that coherence

sing a damped wavefunction instead
$$\psi(k,r)\sim rac{e^{i\kappa r}e^{-r/\lambda(k)}}{kr}$$

where $\lambda(k)$ is the photoelectron's mean free path (including core-hole lifetime), the EXAFS equation becomes:

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin[2kR_j + \delta_j(k)]$$

Carlo Segre (Illinois Tech)

U

PHYS 570 - Fall 2021

1

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2021

October 28, 2021

11 / 23

 λ is mostly independent of the system, but depends strongly on k:

 λ is mostly independent of the system, but depends strongly on k:

11/23

 λ is mostly independent of the system, but depends strongly on k:

 λ is mostly independent of the system, but depends strongly on k:

for 3 Å $^{-1}$ < k < 15 Å $^{-1}$, λ < 30 Å

along with the R^{-2} term this makes EXAFS a local atomic probe

for XANES ($k < 3 \text{ Å}^{-1}$), both λ and R^{-2} become large: making XANES not really a local probe

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $|\Phi_0^{N-1}
angle = (N-1)$ – electrons in unexcited atom

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $ert \Phi_0^{N-1}
angle = (N-1)$ – electrons in unexcited atom $\langle \Phi_f^{N-1} ert = (N-1)$ – electrons, relaxed by core-hole

12/23

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $|\Phi_0^{N-1}\rangle = (N-1)$ – electrons in unexcited atom $\langle \Phi_f^{N-1}| = (N-1)$ – electrons, relaxed by core-hole

 S_0^2 is usually taken as a constant:

 $0.7 < S_0^2 < 1.0$

12/23

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $|\Phi_0^{N-1}\rangle = (N-1)$ – electrons in unexcited atom $\langle \Phi_f^{N-1}| = (N-1)$ – electrons, relaxed by core-hole

 S_0^2 is usually taken as a constant:

 $0.7 < S_0^2 < 1.0$

and is used as a fitting parameter that multiplies χ :

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $|\Phi_0^{N-1}\rangle = (N-1)$ – electrons in unexcited atom $\langle \Phi_f^{N-1}| = (N-1)$ – electrons, relaxed by core-hole

 S_0^2 is usually taken as a constant:

 $0.7 < S_0^2 < 1.0$

and is used as a fitting parameter that multiplies χ :

 S_0^2 is completely correlated with N (!!!)

Carlo Segre (Illinois Tech)

Another important amplitude reduction term is due to the relaxation of the other electrons in the absorbing atom to the hole in the core level:

$$S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$$

 $|\Phi_0^{N-1}\rangle = (N-1)$ – electrons in unexcited atom $\langle \Phi_f^{N-1}| = (N-1)$ – electrons, relaxed by core-hole

 S_0^2 is usually taken as a constant:

 $0.7 < S_0^2 < 1.0$

and is used as a fitting parameter that multiplies χ :

 S_0^2 is completely correlated with N (!!!)

This, and other experimental and theoretical issues, make EXAFS amplitudes (and therefore N) less precise than EXAFS phases (and therefore R)

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2021

The full EXAFS equation can be used to model and interpret experimental data

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2} f_{j}(k) e^{-2R_{j}/\lambda(k)} e^{-2k^{2}\sigma_{j}^{2}}}{kR_{j}^{2}} \sin \left[2kR_{j} + \delta_{j}(k)\right]$$

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or ...

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) orover possible scattering paths (preferred) of the photoelectron.

13/23

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) orover possible scattering paths (preferred) of the photoelectron.

 N_j : path degeneracy

13/23

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or over possible scattering paths (preferred) of the photoelectron.

- N_j: path degeneracy
- R_j : half path length

13/23

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or over possible scattering paths (preferred) of the photoelectron.

- N_j: path degeneracy
- R_j : half path length
- σ_j^2 : path "disorder"

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) orover possible scattering paths (preferred) of the photoelectron.

- N_j: path degeneracy
- R_j : half path length
- σ_i^2 : path "disorder"
- S_0^2 : amplitude reduction factor

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or ...

... over possible scattering paths (preferred) of the photoelectron.

- N_j : path degeneracy k is the photoelectron wave number
- R_j : half path length
- σ_i^2 : path "disorder"
- S_0^2 : amplitude reduction factor

13/23

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or ...

... over possible scattering paths (preferred) of the photoelectron.

- N_j : path degeneracy k is the photoelectron wave number
 - $f_j(k)$: scattering factor for the path

- R_j : half path length σ_i^2 : path "disorder"
- S_0^2 : amplitude reduction factor

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or over possible scattering paths (preferred) of the photoelectron.

- N_j: path degeneracy
- R_j : half path length
- σ_i^2 : path "disorder"
- S_0^2 : amplitude reduction factor

k is the photoelectron wave number

- $f_j(k)$: scattering factor for the path
- $\delta_j(k)$: phase shift for the path

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or over possible scattering paths (preferred) of the photoelectron.

- N_j: path degeneracy
- R_j : half path length
- σ_i^2 : path "disorder"
- S_0^2 : amplitude reduction factor

k is the photoelectron wave number

- $f_j(k)$: scattering factor for the path
- $\delta_j(k)$: phase shift for the path

 $\lambda(k)$: photoelectron mean free path

13/23

The full EXAFS equation can be used to model and interpret experimental data

$$\chi(k) = \sum_{j} \frac{N_j S_0^2 f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin\left[2kR_j + \delta_j(k)\right]$$

where the sum can be either over shells of atoms (Fe-O, Fe-Fe) or over possible scattering paths (preferred) of the photoelectron.

 N_j : path degeneracyk is the photoelectron wave number R_j : half path length $f_j(k)$: scattering factor for the path σ_j^2 : path "disorder" $\delta_j(k)$: phase shift for the path S_0^2 : amplitude reduction factor $\lambda(k)$: photoelectron mean free path

Because we can compute f(k) and $\delta(k)$, and $\lambda(k)$ we can determine Z, R, N, and σ^2 for scattering paths to neighboring atoms by fitting the data.

Sum over paths and multiple scattering

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Sum over paths and multiple scattering

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

Sum over paths and multiple scattering

14 / 23

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

For multi-bounce paths, the total amplitude depends on the angles in the photoelectron path
V

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

For multi-bounce paths, the total amplitude depends on the angles in the photoelectron path Triangle Paths with angles $45^{\circ} < \theta < 135^{\circ}$ aren't strong, but

there can be a lot of them

V

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

For multi-bounce paths, the total amplitude depends on the angles in the photoelectron path

Triangle Paths with angles $45^\circ < \theta < 135^\circ$ aren't strong, but there can be a lot of them

Linear paths, with angles $\theta\approx 180^\circ,$ are very strong: the photoelectron can be focused through one atom to the next

V

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

For multi-bounce paths, the total amplitude depends on the angles in the photoelectron path

Triangle Paths with angles $45^\circ < \theta < 135^\circ$ aren't strong, but there can be a lot of them

Linear paths, with angles $\theta\approx 180^\circ,$ are very strong: the photoelectron can be focused through one atom to the next

FEFF calculates these effects and includes them in f(k) and $\delta(k)$ for the EXAFS equation so that all paths look the same in the analysis

Multiple Scattering is strongest when $\theta>150^\circ$ and the strong angular dependence can be used to measure bond angles

V

A sum over scattering paths allows multiple-scattering paths: the photoelectron scatters from more than one atom before returning to the absorbing atom:

Single Scattering Triangle Paths

Focussed Multiple Scattering Paths

For multi-bounce paths, the total amplitude depends on the angles in the photoelectron path

Triangle Paths with angles $45^\circ < \theta < 135^\circ$ aren't strong, but there can be a lot of them

Linear paths, with angles $\theta\approx 180^\circ,$ are very strong: the photoelectron can be focused through one atom to the next

FEFF calculates these effects and includes them in f(k) and $\delta(k)$ for the EXAFS equation so that all paths look the same in the analysis

Multiple Scattering is strongest when $\theta>150^\circ$ and the strong angular dependence can be used to measure bond angles

For first shell analysis, multiple scattering is hardly ever needed

Carlo Segre (Illinois Tech)

Advantages of nanoferritic alloy (NFA) steels

High density nanofeatures (NFs) and dislocations provide irradiation damage resistance

NFs trap helium in fine bubbles and prevent accumulation of high concentrations

 ${\sf NFs}$ maintain high stable sink densities for vacancy and self-interstitial atom defect annihilation

 ${\sf NFs}$ maintain high creep strength because of dislocation pinning, allowing operation at temperatures above the displacement damage regime

G.R. Odette, M.J. Alinger, and B.D. Wirth, Annu. Rev. Mater. Res. 38, 471-503 (2008).

Fabrication of NFA steels

Atom probe tomography data

distributed throughout the solid

V

Cr

C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, Acta Materialia 61, 2219–2235 (2013).

After mechanical alloying, Cr, Ti and Y are uniformly

Carlo Segre (Illinois Tech)

PHYS 570 - Fall 2021

October 28, 2021

17 / 23

Atom probe tomography data

After mechanical alloying, Cr, Ti and Y are uniformly distributed throughout the solid

Consolidated materials show Ti-O and Y to be primarily co-localized in nanoclusters

C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, Acta Materialia 61, 2219–2235 (2013).

Atom probe tomography data

V

After mechanical alloying, Cr, Ti and Y are uniformly distributed throughout the solid

Consolidated materials show Ti-O and Y to be primarily co-localized in nanoclusters

Use XAS to understand the local structure of these nanoclusters $% \left({{{\rm{AS}}} \right)$

C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, Acta Materialia 61, 2219–2235 (2013).

Samples studied

Sample name	Composition (wt %)					Processing
	Cr	Ti	Мо	W	$Y_{2}O_{3}$	
MA957	14	1	0.3		0.3	hot extruded @ 1150°C
J12YWT	12	0.4		3	0.25	hot extruded @ $1150^{\circ}C$
as received	14	0.4		3		as received powder
as milled	14	0.4		3	0.25	mechanically alloyed powder
850°C	14	0.4		3	0.25	powder annealed @ 850°C
1000°C	14	0.4		3	0.25	powder annealed @ $1000^{\circ}C$
1150°C	14	0.4		3	0.25	powder annealed @ 1150° C

Samples consolidated from as milled powder by hot isostatic pressing were shown to be identical to annealed powders and are thus not discussed.

Carlo Segre (Illinois Tech)

Yttrium edge data

Edges show complex mixture of phases

Carlo Segre (Illinois Tech)

Yttrium edge data

Edges show complex mixture of phases

EXAFS of annealed powders indicate smaller NFs than commercial steels

Titanium edge data

As received, as milled and commercial steels all show a metallic environment; annealed powder edges resemble TiO

Titanium edge data

As received, as milled and commercial steels all show a metallic environment; annealed powder edges resemble TiO

Ti in BCC structure

As received data can be fit with a simple BCC Fe model

Carlo Segre (Illinois Tech)

Ti in BCC structure

Carlo Segre (Illinois Tech)

21/23

Ti in BCC structure

Carlo Segre (Illinois Tech)

As received data can be fit with a simple BCC Fe model MA957 $|k^2\chi(R)|\;[\mathring{A}^3]$ J12YWT 2 R [Å] Commercial alloys fit with this model plus a small amount of Ti-O neighbors

PHYS 570 - Fall 2021

21/23

Ti in TiO structure

Annealed powders have a remarkable resemblance to the cubic TiO calculated spectrum

Ti in TiO structure

All can be fit with cubic TiO plus an additional Ti-O path, likely from complex Y-Ti-O oxides

Carlo Segre (Illinois Tech)

Commercial steels retain Ti in a metallic BCC lattice for the most part

Commercial steels retain Ti in a metallic BCC lattice for the most part

Annealed powders all have mixture of TiO-like structure and more complex oxides ($\sim 50\%$ each)

"Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using x-ray absorption spectroscopy," S. Liu, G.R. Odette, and C.U. Segre, J. Nucl. Mater. 445, 50-56 (2014).

Commercial steels retain Ti in a metallic BCC lattice for the most part

Annealed powders all have mixture of TiO-like structure and more complex oxides ($\sim 50\%$ each)

TiO cubic suboxide is stabilized on the surface of the Y–Ti–O nanoclusters

"Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using x-ray absorption spectroscopy," S. Liu, G.R. Odette, and C.U. Segre, *J. Nucl. Mater.* **445**, 50-56 (2014).

Commercial steels retain Ti in a metallic BCC lattice for the most part

Annealed powders all have mixture of TiO-like structure and more complex oxides ($\sim 50\%$ each)

TiO cubic suboxide is stabilized on the surface of the Y–Ti–O nanoclusters

Presence of this metastable cubic TiO suggests significant fraction of Ti on the surface of Y–Ti–O NFs $\,$

"Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using x-ray absorption spectroscopy," S. Liu, G.R. Odette, and C.U. Segre, *J. Nucl. Mater.* **445**, 50-56 (2014).