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Dumond diagram: no Darwin width

Transfer function of an optical
element parametrized by angle
and wavelength.
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Dumond diagram: no Darwin width Vv

Transfer function of an optical “L
element parametrized by angle 2d
and wavelength. Here Darwin
width is ignored.
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Dumond diagram: no Darwin width Vv

Transfer function of an optical
element parametrized by angle
and wavelength. Here Darwin
width is ignored.

for small angular deviations
sinf is linear with a slope of
cosfp
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Dumond diagram: no Darwin width Vv

A

Transfer function of an optical 4

element parametrized by angle 2d
and wavelength. Here Darwin
width is ignored. AO

cosO; AO

for small angular deviations
sinf is linear with a slope of |  ,----2
cosfp

@

D
non-zero diffracted beam only <
for points on the line n

[
>

O ee'eB

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 2/22



Dumond diagram: no Darwin width Vv

Transfer function of an optical “L
element parametrized by angle 2d
and wavelength. Here Darwin
width is ignored.

for small angular deviations
sinf is linear with a slope of
cosfp

non-zero diffracted beam only
for points on the line

[
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a horizontal line transfers input <
to output beam characteristics Oi-GB 0
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Dumond diagram: symmetric Bragg YV

If Darwin width is included, the
Bragg condition is represented
by a box
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Dumond diagram: symmetric Bragg i

If Darwin width is included, the
Bragg condition is represented
by a box

for a perfectly collimated (no
angular  divergence) input
beam, a bandwidth of radiation
is accepted by the crystal

0-6, O 0 6,6,
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Dumond diagram: symmetric Bragg i

If Darwin width is included, the
Bragg condition is represented
by a box

W0=SineB CD for a perfectly collimated (no
angular  divergence) input
beam, a bandwidth of radiation
is accepted by the crystal

this input bandwidth is trans-
ferred to a similar output band-
width which is also collimated

U U R ¥

0-6, O 0 6,6,
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Dumond diagram: asymmetric Bragg

For an asymmetric crystal, the
output beam is no longer col-
limated but acquires a diver-
gence e
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Dumond diagram: asymmetric Bragg Vv

For an asymmetric crystal, the
output beam is no longer col-
limated but acquires a diver-
gence e

a perfectly collimated input
beam transfers to an output
beam that has an angular di-
vergence which depends on the
asymmetry factor b
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Dumond diagram: asymmetric Bragg
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For an asymmetric crystal, the
output beam is no longer col-
limated but acquires a diver-
gence e

a perfectly collimated input
beam transfers to an output
beam that has an angular di-
vergence which depends on the
asymmetry factor b

this is in addition to a compres-
sion (in this case) of the beam
height (Liouville's theorem!)
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Double crystal monochromator: Non-dispersive V

) A

the transfer functions of the two crystals match
and full bandwith and divergence is preserved,
giving a triangle intensity curve
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Double crystal monochromators: Dispersive
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Double crystal monochromators: Dispersive V

2A6. M

v

the transfer function matches only in a small
energy band that varies with angle of the second
crystal, mapping out the Darwin curve of the
first crystal
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Asymmetric monochromator at ELETTRA

Chamber Ila (5.4 keV)

Chamber Ilc (16 keV'
Chamber IIb (8 keV) ameer \C( v

SAXS
beamline

Floor level 11 for
Synchrotron chambers Ia-ITe

radiation

Floor Tevel 1 for
chamber I

“High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA,” S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron
Rad. 5, 1215-1221 (1998).
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Asymmetric monochromator at ELETTRA

Chamber 1la (5.4 keV) Chamber 1lc (16 keV)

Chamber IIb (8 keV)

SAXS
beamline

Floor level 11 for
Synchrotron chambers Ia-ITe

radiation

Chamber [ Floor level | for
chamber I

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2° grazing incidence in
order to spread the heat load

“High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA,” S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron
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Asymmetric monochromator at ELETTRA i

Chamber 1la (5.4 keV) Chamber 1lc (16 keV)

Chamber IIb (8 keV)

SAXS
beamline

Floor level 11 for
Synchrotron chambers Ia-ITe

radiation

Chamber [ Floor level | for
chamber I

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2° grazing incidence in
order to spread the heat load

The three crystals are set for single energies of 5.6, 8.0, and 16 keV with a vertical
displacement of 1.5 m and asymmetry parameter, b, of 0.053, 0.078, and 0.17, respectively

“High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA,” S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron
Rad. 5, 1215-1221 (1998).

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 7/22



Total cross section \ i

—_—

— .

g -~
Thomson+Comptort =~

. Ar
IR (L ST w2 The total cross-section for photon
E : “absorption” includes elastic (or co-
R N E herent) scattering, Compton (inelas-
S 10k G . .
2 10 e : tic) scattering, and photoelectric ab-
g : sorption.
3 103_ 1
-
é 107 F e e i

10 2 5 10 20 50 100
Photon energy [keV]

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 8/22



Total cross section
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The total cross-section for photon
“absorption” includes elastic (or co-
herent) scattering, Compton (inelas-
tic) scattering, and photoelectric ab-
sorption.

Characteristic absorption jumps de-
pend on the element
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Total cross section \ i
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10t e ' © 1 The total cross-section for photon
~ : : “absorption” includes elastic (or co-
herent) scattering, Compton (inelas-
tic) scattering, and photoelectric ab-
sorption.

Characteristic absorption jumps de-
pend on the element

Absorption cross-section [barn]

Thomson-+Compton These quantities vary significantly
over many decades but can easily put

2 5 1.0 2.0 50 100 on an equal footing.
Photon energy [keV]
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Scaled absorption
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Scaled absorption
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Scaled absorption
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05 can be scaled for different elements
by E3/Z* and plotted together
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Scaled absorption
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Absorption edge nomenclature

The states are labeled according to the prin-
cipal, orbital angular momentum, and total
angular momentum quantum numbers, n, /,

. K Energy
and j, respectively A
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Absorption edge nomenclature

The states are labeled according to the prin-
cipal, orbital angular momentum, and total
angular momentum quantum numbers, n, /,
and j, respectively

The absorption edges are labeled according
to the initial principal quantum number of
the photoelectron:

Energy
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n=2—1L
n=3—M
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Absorption edge nomenclature

The states are labeled according to the prin-
cipal, orbital angular momentum, and total
angular momentum quantum numbers, n, /,
and j, respectively

The absorption edges are labeled according
to the initial principal quantum number of
the photoelectron:

n=1—K
n=2—1L
n=3—M

Roman numerals increase from low to high
values of / and j

Energy

»
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.

integral bra-ket
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.

integral bra-ket

bra Y*(x) (1] complex conjugate is implicit
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.

integral bra-ket
bra P*(x) (Y] complex conjugate is implicit
ket P(x) %)
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.

integral bra-ket
bra P*(x) (Y] complex conjugate is implicit
ket P(x) %)

normalization J*(x)p(x)dx =1 () =1
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Dirac bra-ket notation YV

Photoelectric absorption and inelastic scattering are quantum phenomena which cannot be
treated semi-classically as scattering can.

Paul Dirac developed a formalism for quantum mechanics which is commonly used. One part
of this formalism is a compact notation which simplifies writing expectation value integrals.
We will use this “bra-ket” notation when discussing photoabsorption.

integral bra-ket
bra P*(x) (Y] complex conjugate is implicit
ket P(x) %)

normalization J*(x)p(x)dx =1 () =1

expectation value J 0 Qudx (Y |Q 1)  operator is applied to the right
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Calculation of o, A

From first-order perturbation theory, the absorption cross section is given by
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Calculation of o, i3

From first-order perturbation theory, the absorption cross section is given by

27T V&

9a = pcarn 3/’Mff’ 6(Er — &) q? sin OdqdOd
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Calculation of o, i

From first-order perturbation theory, the absorption cross section is given by

27r V&

9a = pcarn 3/’Mff’ 6(Er — &) q? sin OdqdOd

where the matrix element M, between the ini-
tial, (i|, and final, |f), states is given by
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Calculation of o, i

From first-order perturbation theory, the absorption cross section is given by

27r V&

9a = pcarn 3/’Mff’ 6(Er — &) q? sin OdqdOd

where the matrix element M;s between the ini- Mie = (i|H,|f)
tial, (i|, and final, |f), states is given by
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given by

21 V/?
Mic|26(E ?sin 0dqdfd
0a hc43/!,f| F—&i)q qdfdy

V\./here.the maFrix element M,’f. bejcween the ini- Mie = (i|H,|f)
tial, (i], and final, |f), states is given by
The interaction Hamiltonian is expressed in ep - A e2A2
terms of the electromagnetic vector potential H = m om
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Calculation of o, \ i

From first-order perturbation theory, the absorption cross section is given by

27 v? .
Oa ﬁC4 213 / ’le| 0 gf )q2 sin quded(p
where the matrix element Mjr between the ini- - = (1] F)
tial, (i|, and final, |f), states is given by

The interaction Hamiltonian is expressed in

2y - ep-A  e2A2
terms of the electromagnetic vector potential = +

m 2m

o h o
A—2 [ ik-? 1 lk~r]
c V 2e0Vw +ae
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Calculation of o, \ i

From first-order perturbation theory, the absorption cross section is given by

27 V2 .
00 =4 4 3/]M,f| (& — )q2 sin 0dqdfdy
where the matrix element M;s between the ini- Mie = (i|H,|f)
tial, (i], and final, |f), states is given by
The interaction Hamiltonian is expressed in ep - A e2A2
terms of the electromagnetic vector potential H = m om

The first term gives absorption

o h o
A=z [ ik-? 1 lk~r]
c V 2e0Vw +ae
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Calculation of o, \ i

From first-order perturbation theory, the absorption cross section is given by

27 V2 .
00 =4 4 3/]M,f| (& — )q2 sin 0dqdfdy
where the matrix element M;s between the ini- Mie = (i|H,|f)
tial, (i], and final, |f), states is given by
The interaction Hamiltonian is expressed in ep - A e2A2
terms of the electromagnetic vector potential H = m om

The first term gives absorption while the second =
produces Thomson scattering so we take only A=2 [ ik¥ + aL "k‘F]
the first into consideration now. 2e0Vw
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Free electron approximation VYV

In order to evaluate the M;r matrix element we define the initial and final states
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)

[7) = [1)410)e

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 13 /22



Free electron approximation \ i

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)

. . i) = [1)4]0)e
similarly, the final state has no photon and an

ejected free electron (ignoring the core hole and
charged ion)

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 13 /22



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)

. . i) = [1)4]0)e
similarly, the final state has no photon and an

ejected free electron (ignoring the core hole and fl= 1100
charged ion) (] = e(1]5{0]
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Free electron approximation \ i

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)

. . |7} = [1)4]0)e
similarly, the final state has no photon and an

ejected free electron (ignoring the core hole and fl= 1100
charged ion) (] = e(1]5{0]
Thus

Mo — € h 1 (01(B - 2)ael®F 4 (5. &Yal e FF|1).10
# = 2\ 5 AR 013 - 267 + (5- 8)ale 7|1, o)
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final states

the initial state has a photon and a K electron
(no free electron)

. . i) = [1)4]0)e
similarly, the final state has no photon and an

ejected free electron (ignoring the core hole and fl= 1100
charged ion) (] = e(1]5{0]

Thus

e h TR TR
M = — . 1 = oA ik-? = A\t —lk-rl .
7= o\ 3y U (018 2)ae™ 4 (5-)ale (1), 0. |

The calculation is simplified if the interaction Hamiltonian is applied to the left since the final

state has only a free electron and no photon
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Free electron approximation VYV

The free electron state is an eigenfunction of the
electron momentum operator
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Free electron approximation VYV

e(11P = (hg)e(1] The free electron state is an eigenfunction of the
electron momentum operator
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Free electron approximation VY

e(11P = (hg)e(1] The free electron state is an eigenfunction of the
electron momentum operator

The annihilation operator applied to the left cre-
ates a photon
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Free electron approximation \ i

(1P = (hgG) (1] The free electron state is an eigenfunction of the
electron momentum operator
v{nla=(Vn+1),(n+1]| The annihilation operator applied to the left cre-

ates a photon

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 14 /22



Free electron approximation YV

(1P = (hgG) (1] The free electron state is an eigenfunction of the
electron momentum operator
v{nla=(Vn+1),(n+1]| The annihilation operator applied to the left cre-

ates a photon while the creation operator annihi-
lates a photon when applied to the left.
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Free electron approximation

(11 = (hg) (1]

Carlo Segre (lllinois Tech)

The free electron state is an eigenfunction of the
electron momentum operator

The annihilation operator applied to the left cre-
ates a photon while the creation operator annihi-
lates a photon when applied to the left.
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Free electron approximation YV

(1P = (hgG) (1] The free electron state is an eigenfunction of the
electron momentum operator
v{nla=(Vn+1),(n+1]| The annihilation operator applied to the left cre-
; ates a photon while the creation operator annihi-
v{nla" = (Vn)y(n - 1| lates a photon when applied to the left.
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Free electron approximation YV

(1P = (hgG) (1] The free electron state is an eigenfunction of the
electron momentum operator
v{nla=(Vn+1),(n+1]| The annihilation operator applied to the left cre-
; ates a photon while the creation operator annihi-
v{nla" = (Vn)y(n - 1| lates a photon when applied to the left.
e(1(0l(B-8)a=h(G-&)e(L],(1], (1, (0(B-&)a’ =0
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Free electron approximation \ i
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Photoelectron integral vV
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Photoelectron integral 7
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Photoelectron integral 7

_eh ) N ,kr _eh h =
My =21\ ot@-2) [wieudr =[G 20(0)

The initial electron wavefunction is simply that
of a 1s atomic state
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Photoelectron integral NS
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Photoelectron cross-section A

the overall matrix element squared for a particular photoelectron final direction (¢, 6) is
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Photoelectron cross-section i
the overall matrix element squared for a particular photoelectron final direction (¢, 6) is

e\’ h ) .
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Photoelectron cross-section i
the overall matrix element squared for a particular photoelectron final direction (¢, 6) is

e\’ h . o
\I\/I,-f\2 = <m> m(& sin® 0 cos® g0)<z32(Q)

and the final cross-section per K electron can now be computed as
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Photoelectron cross-section \ i
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Calculated cross sections
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Calculated cross sections
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Calculated cross sections
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What is XAFS?

X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray absorption coefficient

at energies near and above an x-ray absorption edge. XAFS is also referred to as X-ray
Absorption Spectroscopy (XAS) and is broken into 2 regimes:
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X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray absorption coefficient
at energies near and above an x-ray absorption edge. XAFS is also referred to as X-ray
Absorption Spectroscopy (XAS) and is broken into 2 regimes:

XANES X-ray Absorption Near-Edge Spectroscopy
EXAFS Extended X-ray Absorption Fine-Structure

XANES and EXAFS contain related, but slightly different information about an element’s local
coordination and chemical state and have the following useful characteristics:

® is sensitive to local atomic coordination

® is sensitive to chemical / oxidation state

® applies to any element

® works at low concentrations

® has minimal sample requirements
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The EXAFS experiment vV
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The EXAFS experiment vV

I, = incident intensity x = sample thickness

I+ = transmitted intensity
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It - Ioe_M(E)X

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 19 /22



The EXAFS experiment vV

I, = incident intensity x = sample thickness

e = transmitted intensity w(E) = absorption coefficient
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The EXAFS experiment vV

I, = incident intensity x = sample thickness

e = transmitted intensity w(E) = absorption coefficient

¢ = fluorescence intensity

I = l,e ™ MEX 5 J(E)x =In ('I—)
t
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The x-ray absorption process

An x-ray is absorbed by an atom when the
energy of the x-ray is transferred to a core-
level electron (K, L, or M shell).
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The x-ray absorption process N

An x-ray is absorbed by an atom when the
energy of the x-ray is transferred to a core-
level electron (K, L, or M shell).

The atom is in an excited state with an
empty electronic level: a core hole.
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The x-ray absorption process \d

T T T T T
| osk L[| ]
An x-ray is absorbed by an atom when the ! !
energy of the x-ray is transferred to a core- : :
level electron (K, L, or M shell). oF | \
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| |
The atom is in an excited state with an = o5} ! !
= -0
empty electronic level: a core hole. = o !
= I ';<'- I i
o Ak 1 [X0 i
Any excess energy from the x-ray is given L [E
to an ejected photoelectron, which expands - i P i 1
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EXAFS data extraction i
T T T T T
normalize by fitting pre-edge and post-edge 05F 7
trends L |
oF ] i
= -05F .
_©
T .
A i

15 _\J -
2 1 1 T | 1 1
11500 12000 12500
E(eV)

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 October 26, 2021 21/22




EXAFS data extraction

normalize by fitting pre-edge and post-edge
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EXAFS data extraction ,/}.-
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EXAFS data extraction

normalize by fitting pre-edge and post-edge

trends

remove “smooth” po background

convert to photoelectron momentum space
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EXAFS data extraction vV
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EXAFS data extraction W-.-
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XANES edge shifts and pre-edge peaks \d
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XANES edge shifts and pre-edge peaks \d
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