
Today’s outline - October 21, 2021

• Extinction and absorption

• Perfect crystal integrated intensity

• Comparison of intensities

• Absorption, energy, and order effects

• Standing waves

• Dumond diagrams and monochromators

Reading Assignment: Chapter 6.5; Chapter 7.1

Homework Assignment #05:
Chapter 5: 1,3,7,9,10
due Tuesday, November 02, 2021

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, November 16, 2021
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Review of Darwin theory

Starting with a single layer, the Darwin theory of diffraction from a perfect crystal is developed
giving the reflectivity R(x) where ϵ = ∆− g0, iη = ±

√
ϵ2 − g2, and x = ϵ/g
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x2 − 1)2 x ≤ −1

the Darwin curve has 100% reflectivity
across a width that varies inversely with
the order, m, of the reflection

the relative phase between the scattered
and transmitted waves varies from out of
phase at x = −1 to in phase at x = +1
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Extinction depth

An x-ray penetrating into a crystal scatters and thus is attenuated as it passes each plane of
atoms by an amount e−Re{η}

the characteristic length for the attenuation is
defined by an effective number of reflecting lay-
ers, Neff such that

multiplying by the layer spacing, d , gives the
extinction depth

recalling that η = g
√
1− x2, implies that Λext

varies across the Darwin reflectivity curve

e−Neff Re{η} = e−1/2 −→ Neff =
1

2Re{η}

Λext = Neff d =
d

2Re{η}

x → ±1, η → 0, Λext → ∞

Thus absorption processes, which have been neglected up to now are the sole determinant of
the extinction depth in a perfect crystal. For x = 0 and η = g , the actual extinction depth is

Λext(x = 0) =
d

2g
=

1

4

(m
d

) vc
r0|F |
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Extinction depth for GaAs

The extinction depth depends on the structure factor and
thus will vary significantly depending on the strength of
the particular Bragg reflection

Λext(x = 0) =
1

4

(m
d

) vc
r0|F |

For the strong (400) reflection of GaAs

FGaAs(400) = 4× [fGa(400) + fAs(400)] = 4× [f 0Ga(400) + f ′Ga + if ′′Ga + f 0As(400) + f ′As + if ′′As ]

= 4× [25.75− 1.28− 0.78i + 27.14− 0.93− 1.00i ] = 154.0− 7.1i

for λ = 1.54056 Å, vc = 180.7 Å, and d400 = 1.41335 Å the extinction depth is
Λext(400) = 0.74µm while the absorption depth, sin θ/2µ = 7.95µm, is more than 10 times
larger

For the weak (200) reflection of GaAs

FGaAs(200) = 4× [fGa(200)− fAs(200)] = 4× [f 0Ga(200) + f ′Ga + if ′′Ga − f 0As(200)− f ′As − if ′′As ]

= 4× [19.69− 1.28− 0.78i − 21.05 + 0.93 + 1.00i ] = −6.96− 0.91i

so that Λext(200) = 8.1µm and sin θ/2µ = 3.9µm, which is 2 times smaller
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Integrated intensity

Starting with the expression for the
Darwin curve it is possible to inte-
grate and compute the integrated
intensity of the reflected x-rays

converting into an integrated in-
tensity in terms of the variable ζ

R(x) =
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converting to angle and including the incident flux (Φ0), cross-sectional area (A0) of the beam,
polarization factor and Debye-Waller factor, the scattered intensity from a perfect crystal is

IPSC = Φ0A0
8λ2r0|F |
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Intensity comparison

Comparing the integrated intensity from a perfect crystal with that which was calculated for a
mosaic crystal

Perfect crystal

IPSC =
8Φ0A0λ

2r0|F |
3πvc sin 2θ

(
1 + | cos 2θ|

2

)
e−M

Mosaic crystal

IMSC =
Φ0A0λ

3r20 |F |2

2µv2c sin 2θ

(
1 + cos2 2θ

2

)
e−2M

Taking the ratio of these two intensities shows that the intensity from a mosiac crystal is
significantly different than from a perfect crystal

IMSC
IPSC

=

(
3π

16

)
λr0|F |
µvc

(
1 + cos2 2θ

1 + | cos 2θ|

)
e−M ∝

(
3π

16

)
λr0|F |
µvc

For the strong (400) reflection of GaAs this approximate ratio is IMSC/I
P
SC ≈ 6 while for the

weak (200) reflection it is IMSC/I
P
SC ≈ 0.2
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Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

The
width varies as the inverse squared.

ζ0 =
g0
π

=
2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center of a lower order
reflection, the high orders can be effec-
tively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This is called “detuning”.
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Angular offset

We can calculate the angular offset by noting that the offset and width have many common
factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0
m

=
ζD
2

|F |
|F0|

∆θoff =
ζD
2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å : ωtotal
D = 0.0020◦, ∆θoff = 0.0018◦

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 21, 2021 8 / 22



Angular offset

We can calculate the angular offset by noting that the offset and width have many common
factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0
m

=
ζD
2

|F |
|F0|

∆θoff =
ζD
2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å : ωtotal
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Darwin widths

the quantities below the widths are f 0(Q), f ′, and f ′′ (for λ = 1.5405 Å). For an angular
width, multiply times tan θ and for π polarization, multiply by cos(2θ).
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Absorption effects

The transmitted and scattered waves in a perfect crystal have both a phase shift and an
attenuation due to absorption

the phase shift is proportional to g0 which is real, however, by adding an imaginary
component, absorption can be included in the model

g0 =

(
2d2r0
mvc

)
F0

F0 =
∑
j

(Zj + f ′j + if ′′j )

g =

(
2d2r0
mvc

)
F

F0 =
∑
j

(f 0j (Q⃗)j + f ′j + if ′′j )e
i Q⃗ ·⃗rj

the variable x that parametrizes
the reflectivity now is complex

xc = mπ
ζ

g
− g0

g

r(xc) =


1

xc+
√

x2c−1
≈ xc −

√
x2c − 1 Re{xc} ≥ +1

1

xc+i
√

x2c−1
≈ xc − i

√
x2c − 1 |Re{xc}| ≤ 1

1

xc−
√

x2c−1
≈ xc +

√
x2c − 1 Re{xc} ≤ −1
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Absorption and the Darwin curve

Silicon (111) Darwin curves

solid line is for λ = 0.70926 Å

dashed line is for λ = 0.1.5405 Å

absorption is highest at x = +1 since the
standing wave field is in phase with the
atomic planes

absorption is reduced for higher energies

note that width of Darwin curve is indepen-
dent of wavelength
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absorption is highest at x = +1 since the
standing wave field is in phase with the
atomic planes

absorption is reduced for higher energies

note that width of Darwin curve is indepen-
dent of wavelength

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 October 21, 2021 11 / 22



Absorption and the Darwin curve

Silicon (111) Darwin curves

solid line is for λ = 0.70926 Å
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Energy dependence

The angular Darwin width, wD does depend on energy and polarization of the beam
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Standing waves

T S

y

z

When the Bragg condition is met for a perfect crystal, the
total wavefield above the crystal is made up of the incident
and diffracted wavefields, T ∝ e ikyye ikzz and S ∝ e ikyye−ikzz

at the crystal surface, z = 0 the amplitudes are given by T0,
and S0 and the total wavefield for z < 0 is

Atot = T0e
ikyy

[
e ikzz + re−ikzz

]
, r(x = ϵ/g) = |r(x)|e iϕ

I (z , x) = T 2
0

[
e ikzz + |r |e iϕe−ikzz

] [
e−ikzz + |r |e−iϕe+ikzz

]
= T 2

0

[
1 + |r |2 + |r |e iϕe−i2kzz + |r |e−iϕe i2kzz

]
= T 2

0

[
1 + |r |2 + 2|r | cos(ϕ− Qz)

]
as x varies along the Darwin curve, the phase of the standing
wave at a position z varies by π
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Standing wave experiments

Once a standing wave is established by diffraction from a per-
fect crystal, the nodes can be shifted in space by traversing the
rocking curve

As the antinodes of the standing wave sweep past atoms in the
crystal or on the surface, they will emit photoelectrons

An electron or flourescence spectrometer is used to detect the
signals and determine bond distances

This can be done most effectively by tuning the energy through
the Darwin width of the rocking curve

A high resolution monochromator is required for this kind of
experiment
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Beam line ID32 @ ESRF
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Structure of Sn on Ge(111)

The low temperature 3 × 3 structure (dashed
line) is well known but the room temperature√
3×

√
3 surface structure (solid line) is unre-

solved

A sub-monolayer of Sn is evaporated on a
clean Ge(111) surface and studied using x-ray
standing wave stimulated photoelectron spec-
troscopy

Below 0.2 ML, the well known 2 × 2 structure
is measured as a reference

Above 0.2 ML, the
√
3×

√
3 structure appears

and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)
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Structure of Sn on Ge(111)

With an incident energy of 2.5 keV, the 2× 2 and√
3×

√
3 structures are measured in an off-Bragg

condition

The lines for both the Sn 3d5/2 and 4d peaks in the
2× 2 phase are sharp, indicating a single chemical
state

The
√
3×

√
3 structure shows two distinct chemi-

cal shifts, with the majority component, I1, having
a slightly lower binding energy than the minority
component, I2

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

By varying the energy with a resolution of 500
meV, the standing wave is swept through the Sn
layer

As the energy is scanned around the center of
the Ge(111) reflection, the fits using a mixture of
Gaussian and Lorentzian line shapes show that the
relative intensity, I1/I2 varies

At ∆Eγ = 0.45 eV, the I1/I2 ratio almost com-
pletely inverts, showing that the two atom popu-
lations are at different heights above the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

The normalized peak intensities can be fitted to
extract the relative positions of the two popula-
tions of atoms and their atomic ratio

Population 1 is two times larger than population 2
and is located a height ∆h = 0.23 Å further from
the Ge(111) surface

Population 1 also has a lower binding energy,
demonstrating that the binding energy is directly
correlated to the height from the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren,
B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).
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Asymmetric geometry

When the diffracting planes are not precisely
aligned with the surface of the crystal the asym-
metry angle, α, is the important parameter

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

−→ He =
Hi

b

according to Liouville’s theorem, phase space is
invariant so the divergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b
(ζD tan θ)

δθiHi

=
1√
b
(ζD tan θ)bHe =

√
b(ζD tan θ)He

= δθeHe
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Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution of the Darwin curves
of both crystals.

When the two crystals have a matched asymmetry, we get a triangle. When
one asymmetry is much higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right
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