
Today’s outline - September 30, 2021

• Small angle x-ray scattering

• Calculating Rg

• Porod analysis

• Polydispersivity

• Unified fit model

• Interparticle interactions

Reading Assignment: Chapter 4.5; Chapter 5.1

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Tuesday, October 05, 2021

Homework Assignment #04:
Chapter 4: 2,4,6,7.10
due Tuesday, October 19, 2021
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Liquid scattering review

The liquid scattering experiment measured the liquid structure factor, S(Q), a short range
order quantity.

by applying a Fourier transform, it is possible to extract the radial distribution function for the
liquid, g(r)

g(r) = 1 +
1

2π2rρat

∫ ∞
0

Q [S(Q)− 1] sin(Qr)dQ

This formalism holds for both non-crystalline solids and liquids, even though inelastic
scattering dominates in the latter.

The relation between radial distribution function and structure factor can be extended to
multi-component systems where g(r) → gij(r) and S(Q) → Sij(Q).
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Water dynamics

Liquid scattering can be used to study dynamics

In this article, the authors measured the liquid
scattering as a function of both momentum, Q,
and energy, E , transfer by using analyzers set
for a specific energy (21.747 keV) but varying Q
and then scanning the incident energy at fixed
incident angle

The Van Hoff function can be obtained by a
double Fourier transform

g(r , t)− 1 =
1

2ρπ2r

∫ ∫
e iωt sin(Qr)QS(Q,E )dQ dE

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Water dynamics

The peak below 1.5Å represents the
self motion of the central atom while
the data at longer distances represents
the collective motions of two different
atoms, in this case the oxygens

The first and second peaks are highly
coupled in space and time and merge
within 0.8 ps. This behavior is dif-
ferent from liquid metals and leads to
the viscosity of water.

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Small angle x-ray scattering

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm + f (~Q)2ρat

∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm

Recall that there was an additional term in the scattering intensity which becomes important
at small Q.

I SAXS(~Q) = f 2
∑
n

∫
V
ρate

i ~Q·(~rn−~rm)dVm = f 2
∑
n

e i
~Q·~rn

∫
V
ρate

−i ~Q·~rmdVm

= f 2
∫
V
ρate

i ~Q·~rndVn

∫
V
ρate

−i ~Q·~rmdVm =

∣∣∣∣∫
V
ρsle

i ~Q·~rdV

∣∣∣∣2
Where we have assumed sufficient averaging and introduced ρsl = f ρat . This final expression
looks just like an atomic form factor but the charge density that we consider here is on a much
longer length scale than an atom.
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The SAXS experiment
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Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

Assume that the scattering length density of each identical particle (molecule) is given by ρsl ,p
and the scattering length density of the solvent is ρsl ,0.

I SAXS(~Q) =

∣∣∣∣∣
∫
Vp

ρsle
i ~Q·~rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)2

∣∣∣∣∣
∫
Vp

e i
~Q·~rdVp

∣∣∣∣∣
2

If we introduce the single-particle form factor F(~Q):

F(~Q) =
1

Vp

∫
Vp

e i
~Q·~rdVp I SAXS(~Q) = ∆ρ2V 2

p |F(~Q)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the morphology of the particle
(size and shape).
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and the scattering length density of the solvent is ρsl ,0.

I SAXS(~Q) =

∣∣∣∣∣
∫
Vp

ρsle
i ~Q·~rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)2

∣∣∣∣∣
∫
Vp

e i
~Q·~rdVp

∣∣∣∣∣
2

If we introduce the single-particle form factor F(~Q):

F(~Q) =
1

Vp

∫
Vp

e i
~Q·~rdVp I SAXS(~Q) = ∆ρ2V 2

p |F(~Q)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the morphology of the particle
(size and shape).
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Scattering from a sphere

There are only a few morphologies which can be
computed exactly and the simplest is a constant
density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function of the first
kind

0

0 5 10

j 1
(x

)

x
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Scattering from a sphere

I (Q) = ∆ρ2V 2
p

∣∣∣∣3J1(QR)

QR

∣∣∣∣2

= ∆ρ2V 2
p

∣∣∣∣3sin(QR)− QR cos(QR)

Q3R3
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Guinier analysis

I SAXS(~Q) = ∆ρ2V 2
p |F(~Q)|2,

F(~Q) = 3

[
sin(QR)− QR cos(QR)

Q3R3

]
In the long wavelength limit QR → 0 we can approximate the scattering factor with the first
terms of the sum

F(Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · · − QR

(
1− Q2R2

2
+

Q4R4

24
− · · ·

)]

this simplifies to F(Q) ≈ 1− Q2R2

10
and

I SAXS(Q) ≈ ∆ρ2V 2
p

[
1− Q2R2

10

]2
≈ ∆ρ2V 2

p

[
1− Q2R2

5

]
≈ ∆ρ2V 2

p e
−Q2R2/5, QR � 1
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Guinier analysis

In the long wavelength limit (QR → 0), the
form factor becomes

F(Q) ≈ 1− Q2R2

10

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2/5

and the initial slope of the log(I ) vs Q2 plot
is −R2/5

In terms of the radius of gyration, Rg , which

for a sphere is given by
√

3
5R

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3 0 0.001 0.002

Q
2
 (Å

-2
)
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Calculation of Rg

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3

The radius of gyration Rg is defined as the second moment of the volume
occupied by the particle

in terms of the scattering length density, it can be rewritten as

R2
g =

1

Vp

∫
Vp

r2dVp =

∫
Vp
ρsl ,p(~r)r2dVp∫

Vp
ρsl ,p(~r)dVp

after orientational averaging this expression can be used to extract Rg from
experimental data using

I SAXS1 (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3

this expression holds for uniform and non-uniform densities
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Porod analysis

In the short wavelength limit (QR � 1), the form
factor for a sphere can be approximated

F(Q) = 3

[
sin(QR)

Q3R3
− cos(QR)

Q2R2

]
≈ 3

[
−cos(QR)

Q2R2

]

I (Q) = 9∆ρ2V 2
p

[
−cos(QR)

Q2R2

]2
= 9∆ρ2V 2

p

〈
cos2(QR)

〉
Q4R4

=
9∆ρ2V 2

p

Q4R4

(
1

2

)

I (Q) =
2π∆ρ2

Q4
Sp

power law drop as Q−4 for spheres
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Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an in-
tegral over the particle volume, Vp.

If the particle is not spherical, then its
“dimensionality” is not 3 and this will
affect the form factor and introduce
a different power law in the Porod
regime.

shape order

dVp = 4πr2dr sphere

-4

dAp = 2πrdr disk

-2

dLp = dr rod
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Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute,

more
complex models must be used when the particles are polydispersed with a distribution function
D(R)

I SAXS(Q) = ∆ρ2
∫ ∞
0

D(R)Vp(R)2|F(Q,R)|2 dR

the Schulz function is commonly used to
model D(R) as it goes to a delta function
as the percentage polydispersivity, p → 0

p = 0

p = 10%

p = 20%
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Unified model for SAXS

For inhomogeneous samples, using simple Guinier and Porod models can give an incorrect
description of the actual sample

This can be solved, judiciously, using the Unified model proposed by Beaucage in 1995

The idea is to include multiple populations each with its own Guinier dependence with Rg and
a power law dependence that asymptotically approaches the Porod law for spheres

I (q) = Bbkg +
N∑
i=1

Gie
−

q2R2
g,i
3 + e−

q2R2
g,i−1
3 Bi


(
erf
{

qRg,i√
6

})3
q


Pi

The sum is over structural levels starting with the smallest. For each level there is a Guinier
exponential prefactor (Gi ), a radius of gyration (Rg ,i ), a power law constant prefactor (Bi ),
and a power law exponent (Pi ).
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Rg ,i−1 is the high-q power law cutoff for each level and is taken to be the radius of gyration of
the previous level to avoid double counting.

Additional parameters can be added, such as a structure factor that is different than unity, and
interparticle correlation parameters.

It is important not to include more levels than are significant physically
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