
Today’s outline - September 16, 2021

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation

• Designing a multilayer

• Reflection from a graded index

• Reflection from rough surfaces

• Surface models

Reading Assignment: Chapter 3.7–3.8

Homework Assignment #02:
Problems on Blackboard
due Tuesday, September 21, 2021

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Tuesday, October 05, 2021
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

q � 1

|r01| � 1 α > αc

r01 =
q0 − q1

q0 + q1

q0 + q1

q0 + q1
=

q2
0 − q2

1

(q0 + q1)2
≈ 1

(2q0)2
=

(
Qc

2Q0

)2

rslab =
r01

(
1− p2

)
1− r2

01p
2
≈ r01

(
1− p2

)
≈ r01

(
1− e iQ∆

)
≈
(

Qc

2Q0

)2 (
1− e iQ∆

)
= −16πρr0

4Q2
e iQ∆/2

(
e iQ∆/2 − e−iQ∆/2

)
= −i

(
4πρr0∆

Q

)
��

����sin(Q∆/2)

Q∆/2
����
e iQ∆/2

≈ −i λρr0∆

sinα
= rthin slab

Since Q∆� 1 for a thin slab
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Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ composed of
two materials, A and B which have a density contrast
(ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter related to
the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β
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Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer
components

and assuming that material A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λr0ρAB

sin θ

∫ +ΓΛ/2

−ΓΛ/2
e i2πζz/Λdz

= −i λr0ρAB

sin θ

Λ

i2πζ

[
e iπζΓ − e−iπζΓ

]
r1(ζ) = −2ir0ρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2ir0ρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γ through nA and a
fraction (1− Γ) through nB . The amplitude absorption coefficient, β is

β = 2

[
µA

2

ΓΛ

sin θ
+
µB

2

(1− Γ)Λ

sin θ

]
=

Λ

sin θ
[µAΓ + µB(1− Γ)]
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Reflectivity calculation
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∆W/∆Si=10Å/40Å

10 bilayers
of W/Si

When ζ = QΛ/2π is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays

Multilayers are used commonly on labora-
tory sources as well as at synchrotrons as
mirrors
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Slab - multilayer comparison
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Kinematical reflectivity from a multilayer
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of W/Si

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements

This combines the Kiessig fringes from the en-
tire multilayer and the interference obtained be-
cause of the bilayer repetition

However, the simple kinematical approximation
fails at very low values of Q as can be seen in
the figure

An exact approach is required to give a solution
which holds for all values of Q

This is Parratt’s recursive approach and needs
to be computed numerically
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which holds for all values of Q

This is Parratt’s recursive approach and needs
to be computed numerically
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Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take ∆j as the thickness of each layer and nj = 1− δj + iβj as the index of refraction of each
layer

because of continuity, kxj = kx and therefore, we can compute the z-component of ~kj

k2
zj = (njk)2 − k2

x = (1− δj + iβj )
2 k2 − k2

x

≈ k2
z − 2δjk

2 + 2iβjk
2

Qj = 2kj sinαj = 2kzj =
√
Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer in the
jth layer
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Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the Nth layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the Nth layer, in-
cluding multiple reflections is now calculated (note
no prime!)

r ′j ,j+1 =
Qj − Qj+1

Qj + Qj+1

r ′N,∞ =
QN − Q∞
QN + Q∞

rN−1,N =
r ′N−1,N + r ′N,∞p2

N

1 + r ′N−1,N r
′
N,∞p2

N

The recursive relation can be seen from the calculation of reflectivity of the next layer up

rN−2,N−1 =
r ′N−2,N−1 + rN−1,Np

2
N−1

1 + r ′N−2,N−1rN−1,Np
2
N−1
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Kinematical - Parratt comparison

0 0.2

Q (Å
-1
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Kinematical approximation gives a reason-
ably good approximation to the correct cal-
culation, with a few exceptions.

Parratt calculation gives RPar = 1 as Q → 0
while kinematical diverges (RKin →∞).

Parratt peaks shifted to slightly higher val-
ues of Q

Peaks in kinematical calculation are some-
what higher reflectivity than true value.
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Multilayer design

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ∼ 2 degrees with
0.5% and 1.0% bandwidth

Common design parameters include bilayer filler fraction Γ = 0.5, roughness σ = 0.35 nm, and
number of bilayers N = 300

MoSi2/B4C and Mo/B4C were selected for the 0.5% and 1.0% bandwidth coatings,
respectively

0.5% Bandwidth 1.0% Bandwidth

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Multilayer fabrication & testing

The 0.5% and 1.0% bandwidth layers were de-
posited side-by-side on a monolithic 20 mm × 30
mm × 100 mm polished silicon block

When illuminated with 12 keV x-rays the two multilayers showed diffraction peaks at nearly
the same angle. The reflectivities were both over 75% and the bandwidths were 0.52% and
0.86%, respectively.

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Multilayer spectrum

The reflectivity over a wide range
of angles at 8 keV shows total ex-
ternal reflection at low angles with
cutoff at zero degrees

First and second order multilayer
diffraction peaks appear at higher
angles

A. Khounsary et al., “A dual-bandwidth multilayer
monochromator system,” Proc. SPIE 10760, 107600j
(2018).
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Graded interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.

The reflectivity of this kind of interface can be calculated
best in the kinematical limit (Q > Qc ).

The density profile of the interface can be described by
the function f (z) which approaches 1 as z →∞.

The reflectivity can be computed as the superposition of
the reflectivity of a series of infinitesmal slabs of thickness
dz at a depth z .
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Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1

, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity

integrating by parts simplifies

the term in front is simply the Fresnel reflec-
tivity for an interface, rF (Q) when q � 1, the
integral is the Fourier transform of the density
gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2
Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 16 / 27



The error function - a specific case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√

2σ

0
e−t2

dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√

2πσ2
e−

1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection
coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

θ
2

θ
1

V

Taking C to be

its divergence is

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V . The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss’ theorem.

rV = −r0
∫

V
(ρd~r)e i ~Q·~r ,

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

~C = ẑ
e i ~Q·~r

iQz
, ~∇ · ~C =

e i ~Q·~r

iQz
iQz = e i ~Q·~r

rV = −r0ρ
∫

V

~∇ ·

(
ẑ
e i ~Q·~r

iQz

)
d~r = −r0ρ

∫
S

(
ẑ
e i ~Q·~r

iQz

)
· d~S = −r0ρ

1

iQz

∫
S
e i ~Q·~rdxdy = rS
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ẑ
e i ~Q·~r

iQz

)
· d~S = −r0ρ

1

iQz

∫
S
e i ~Q·~rdxdy = rS

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 18 / 27



Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

θ
2

θ
1

V

Taking C to be

its divergence is

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V .

The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss’ theorem.

rV = −r0
∫

V
(ρd~r)e i ~Q·~r ,

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

~C = ẑ
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e i ~Q·~r

iQz
, ~∇ · ~C =

e i ~Q·~r

iQz
iQz = e i ~Q·~r

rV = −r0ρ
∫

V

~∇ ·

(
ẑ
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ẑ
e i ~Q·~r

iQz

)
d~r = −r0ρ

∫
S

(
ẑ
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ẑ
e i ~Q·~r

iQz

)
· d~S = −r0ρ

1

iQz

∫
S
e i ~Q·~rdxdy

= rS

Carlo Segre (Illinois Tech) PHYS 570 - Fall 2021 September 16, 2021 18 / 27



Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

θ
2

θ
1

V

Taking C to be

its divergence is

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V . The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss’ theorem.

rV = −r0
∫

V
(ρd~r)e i ~Q·~r ,

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

~C = ẑ
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Rough surfaces

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by
V .

θ
2

θ
1

V

rV = −r0ρ
∫

V
e i ~Q·~r d3r

rS = −r0ρ
1

iQz

∫
S
e i ~Q·~rdxdy

Using Gauss’ theorem, this volume integral
can be converted to an integral over the sur-
face of the illuminated volume.

This integral is highly model dependent and
can now be evaluated for a number of dif-
ferent cases.
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the ẑ
direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

θ
2

θ
1

V

Thus, the integral need only be evaluated over the
top, rough surface whose variation we characterize
by the function h(x , y)

~Q ·~r = Qzh(x , y) + Qxx + Qyy

rS = −r0ρ
1

iQz

∫
S
e i ~Q·~rdxdy

= − r0ρ

iQz

∫
S
e iQz h(x ,y)e i(Qx x+Qy y)dxdy

dσ

dΩ
= r2

S =

(
r0ρ

Qz

)2 ∫
S

∫
S ′
e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′
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Scattering cross section

If we assume that h(x , y)− h(x ′, y ′) depends only on the relative difference in position, x − x ′

and y − y ′ the four dimensional integral collapses to the product of two two dimensional
integrals

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 ∫
S ′
dx ′dy ′

∫
S

〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1

∫ 〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

where A0/ sin θ1 is just the illuminated surface area and the term in the angled brackets is an
ensemble average over all possible choices of the origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are Gaussian and(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy
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Limiting Case - Flat surface(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

Define a function g(x , y) =
〈

[h(0, 0)− h(x , y)]2
〉

which can be modeled in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta function
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Uncorrelated surfaces(
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)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and〈
[h(0, 0)− h(x , y)]2

〉
= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2 = 2

〈
h2
〉

This quantity is related to the rms roughness, σ by σ2 =
〈
h2
〉

and the cross-section is(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈h2〉/2e iQx xe iQy ydxdy =

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnel cross-section for a flat surface(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
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Surface roughness effect

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2

for a perfectly flat surface, we get the
Fresnel reflectivity derived for a thin slab

for an uncorrelated rough surface, the
reflectivity is reduced by an exponen-
tial factor controlled by the rms surface
roughness σ

this leads to a rapid drop in reflectivity
as the surface roughness increases 0 0.2 0.4 0.6 0.8 1
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Correlated surfaces

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,

g(x , y) = g(r) = g(
√

x2 + y2)

In the limit that the correlations are unbounded as r →∞, g(x , y) is given by g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate
the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx
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Unbounded correlations - limiting cases(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak.

h = 1/2: Lorentzian with half-width AQ2
z /2(

dσ

dΩ

)
=

(
A0r

2
0ρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

h = 1: Gaussian with variance AQ2
z(

dσ

dΩ

)
=

(
2
√
πA0r

2
0ρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)
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Bounded correlations(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

If the correlations remain bounded as r →∞

g(x , y) = 2
〈
h2
〉
− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y), C (x , y) = σ2e−(r/ξ)2h

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

eQ2
z C(x ,y)e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫ [

eQ2
z C(x ,y) − 1 + 1

]
e iQx xe iQy ydxdy

=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
+

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelated roughness, and
diffuse scattering from the correlated portion of the surface
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