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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the

critical angle refraction effects can be ignored and we are in the “kinematical” regime.
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Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.
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Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
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Kinematical reflection from a thin slab \

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.

g>1 o= B nGta  g-a 1 :<QC>2
[ro1| <1 a > ac G+aqig+a  (go+q) (29)° 2Qo
fo1 (1 — P2) 2 iQA Qc > QA
rslab:]WNr01(1—P)~r01<1—e )~ TQO (l—e )
_ 167pry /@D /2 <eiQA/2 _ efoA/z) _ dtprA Si”(QA/z)eiQA/z
4Q? Q QA/2

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 September 16, 2021 2/27



Kinematical reflection from a thin slab
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the
critical angle refraction effects can be ignored and we are in the “kinematical” regime.
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Multilayers in the kinematical regime

0 0

/\‘/ N repetitions of a bilayer of thickness A composed of
1 IA two materials, A and B which have a density contrast
2 (pa > pB).

3

N
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Multilayers in the kinematical regime

6710

Carlo Segre (lllinois Tech)

A

N repetitions of a bilayer of thickness A composed of
two materials, A and B which have a density contrast

(pa > pB).
r1 is the reflectivity of a single bilayer
[ is the average absorption per bilayer

¢ = QA/2r is a dimensionless parameter related to
the phase shift of a single bilayer
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Multilayers in the kinematical regime

6710

N repetitions of a bilayer of thickness A composed of

1 IA two materials, A and B which have a density contrast
2 (pa > pB).
:_)’ r1 is the reflectivity of a single bilayer

[ is the average absorption per bilayer
. ¢ = QA/2m is a dimensionless parameter related to
N the phase shift of a single bilayer

Form a stack of N bilayers

1— ei27rCNe—,BN

m(¢) = Z r(¢)e?™ e = r(¢) 1_ 2 Ca-B
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Reflectivity of a bilayer

A\

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab

but replacing the density of the slab material with the difference in densities of the bilayer
components
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but replacing the density of the slab material with the difference in densities of the bilayer
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Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer
components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

_ Aropag [TTM?
n(C) =~ sin 6

0i27Cz/A 4y
—TA/2
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Reflectivity of a bilayer

\
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

Y +IA/2 .
I’1(C) — —j r(.)pAB elQWCZ//\dZ
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Reflectivity of a bilayer

\
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

A\ HTA2
rn(¢) = —i r(.)pAB e/ dz
sind —TA/2 eX — e=X = Djsinx
_ _jAropas A
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Reflectivity of a bilayer V
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab
but replacing the density of the slab material with the difference in densities of the bilayer

components and assuming that material A is a fraction ' of the bilayer thickness

P — PAB=PA—PB

A\ HTA2
rn(¢) = —i r(.)pAB e/ dz
sind —TA/2 eX — e=X = 2jsinx
_ _jAropas A

[eiwgr _ e—iwgr]

sinf i2n¢ Q =4msinf/\ =2n(/N\
) .
r(¢) = —2irpas (/\CF> Sln7§7rrCrC)
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Absorption coefficient of a bilayer \4

The total reflectivity for the multilayer is therefore:

_ AT\ sin (7¢) 1 — e?mCNe=BN
= ~2irpas e ¢ 1—e2mCe=P
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:
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The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng.
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

_ AT\ sin (7¢) 1 — e?mCNe=BN
= ~2irpas e ¢ 1—e2mCe=P

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng. The amplitude absorption coefficient, 3 is

5=2 pa TN pg (1 —T)A
2 sinf 2 sind
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

/\2r> sin (7T¢) 1 — 2N e=BN

v = —2opas (C T T

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I through ns and a
fraction (1 — ') through ng. The amplitude absorption coefficient, 3 is

ﬂ:2[HA A ,uB(l—I_)/\]_ A

2 sinf 2 sind ~ sinf [eal + g (1 = T)]
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Reflectivity calculation

1 ' T
10 bilayers

- of W/Si

Ay/Ag=10A/40A

RMultilayer
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Reflectivity calculation

RMultilayer

1 T

I
10 bilayers
of W/Si

W Si

Ay /A.=10A/40A

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have

peaks
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Reflectivity calculation

10° T T
When ¢ = QA/27 is an integer, we have
peaks
o 102k ] As N becomes larger, these peaks would be-
§ ﬂ come more prominent
g ﬂ
10* 10 bilayers i
of W/Si =
AW/ASi=1IOA/4OA |
0 0.2
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Reflectivity calculation

10 T T
5 102 ﬁ i

g ﬂ
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10* 10 bilayers i
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AW/ASi=1IOA/4OA |
0 0.2
QA"

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays
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Reflectivity calculation

10 T T

5 102 ﬁ i
é ﬂ
o ﬂﬂ
10* 10 bilayers i
of W/Si .
AW/ASi=1IOA/4OA |
0 0.2
QA"

Carlo Segre (lllinois Tech)

When ¢ = QA/27 is an integer, we have
peaks

As N becomes larger, these peaks would be-
come more prominent

This is effectively a diffraction grating for x-
rays

Multilayers are used commonly on labora-
tory sources as well as at synchrotrons as
mirrors
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Slab - multilayer comparison

W~—T T T 71— 10° ' '
A=68 A
?210'2—
810 . ]
€n =
o s
o
10*~ 10 bilayers
of WSi
108 N AW/AS =10A/40A
0 I OI.2 I 0!4 I 0!6 I 0.8 I 1 0 I 0!2
QA" QA"
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Kinematical reflectivity from a multilayer \ i

Carlo Segre (lllinois Tech)

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements
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Kinematical reflectivity from a multilayer

1 T
10 billa ers Using the kinematical approximation, we have
of W/S)i/ calculated the reflectivity of a multilayer of
- ”A /A _10A/40A_ slabs containing two contrasting elements
W =SiT

Multilayer

R

el

00 0.2
Q@A™

Carlo Segre (lllinois Tech)
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Kinematical reflectivity from a multilayer \

1 ' T
10 bilayers

- of WSi |
Ay/Ag=10A/40A

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements

This combines the Kiessig fringes from the en-
tire multilayer and the interference obtained be-
cause of the bilayer repetition

Multilayer

R

el

0 0.2
Q@A™
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Kinematical reflectivity from a multilayer \

1 ' T
10 bilayers

- of WSi |
Ay/Ag=10A/40A

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements

This combines the Kiessig fringes from the en-
tire multilayer and the interference obtained be-
cause of the bilayer repetition

Multilayer

However, the simple kinematical approximation
fails at very low values of @ as can be seen in
the figure

R
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0 0.2
QA"
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Kinematical reflectivity from a multilayer \

1 ' T
10 bilayers

- of WSi |
Ay/Ag=10A/40A

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements

This combines the Kiessig fringes from the en-
tire multilayer and the interference obtained be-
cause of the bilayer repetition

Multilayer

However, the simple kinematical approximation
fails at very low values of @ as can be seen in
the figure

R

An exact approach is required to give a solution

\A /\ which holds for all values of @
el

0 0.2
Q@A™
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Kinematical reflectivity from a multilayer \

Multilayer

R

1 T

I
10 bilayers
of W/Si

Ay/Ag=10A/40A

N

Q

Carlo Segre (lllinois Tech)

0.2

(A7)

Using the kinematical approximation, we have
calculated the reflectivity of a multilayer of
slabs containing two contrasting elements

This combines the Kiessig fringes from the en-
tire multilayer and the interference obtained be-
cause of the bilayer repetition

However, the simple kinematical approximation
fails at very low values of @ as can be seen in
the figure

An exact approach is required to give a solution
which holds for all values of @

This is Parratt’s recursive approach and needs
to be computed numerically
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Parratt’s recursive method A

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.
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Parratt’s recursive method

A\

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J
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Parratt’s recursive method \

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2 = (njk)? — k2

zj X
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Parratt’s recursive method \

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

and the wavevector transfer in the
jth layer
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Parratt’s recursive method \ i

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

Qj = 2kJ sin aj = 2kzj
and the wavevector transfer in the
jth layer
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Parratt’s recursive method 7

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

take A; as the thickness of each layer and n;j =1 — §; + i3; as the index of refraction of each
layer

because of continuity, k,; = kx and therefore, we can compute the z-component of I?J

k2= (nk)? — k2= (1= 0; +iB;)° kK> — k2
~ k2 — 20,k + 2iBjk?

Q) = 2kjsina; = 2ky; = \/ Q2 — BK2; + 8ik25;

and the wavevector transfer in the
jth layer
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Parratt reflectivity calculation \ 7

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is
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Parratt reflectivity calculation v}"

The reflectivity from the interface between layer j . Q — Qi1
. . . . . . r: - = -
and j + 1, not including multiple reflections is JJ+1 Q + Qi1
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Parratt reflectivity calculation V

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

rj{,j+1 — Q— Qi
Qi + Qj+1

Now start calculating the reflectivity from the bot-

tom of the N layer, closest to the substrate,

where multiple reflections are not present
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Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the N layer, closest to the substrate,
where multiple reflections are not present
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Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the N layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the N/ layer, in-
cluding multiple reflections is now calculated (note
no prime!)
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Parratt reflectivity calculation

The reflectivity from the interface between layer j
and j + 1, not including multiple reflections is

Now start calculating the reflectivity from the bot-
tom of the N layer, closest to the substrate,
where multiple reflections are not present

The reflectivity from the top of the N/ layer, in-
cluding multiple reflections is now calculated (note
no prime!)
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Parratt reflectivity calculation v

The reflectivity from the interface between layer j . Q — Q11
and j + 1, not including multiple reflections is J+ Qi + Qi1
Now start calculating the reflectivity from the bot-

tom of the N layer, closest to the substrate, N oo = M
where multiple reflections are not present 7 Qn + Qoo

The reflectivity from the top of the N/ layer, in-
cluding multiple reflections is now calculated (note 'N-1,N
no prime!)

/ / 2
'N—1,N T "N,0oPN
/ / 2

L+ ry g v ooPh

The recursive relation can be seen from the calculation of reflectivity of the next layer up

/ 2
'N—2N—1 T IN-1,NPN_1

rN—2,N—1 = / 5
L+ ry_on-1"N-1,NPN_1
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Kinematical - Parratt comparison
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A\

Kinematical - Parratt comparison

Kinematical approximation gives a reason-
1 ably good approximation to the correct cal-
culation, with a few exceptions.

[}
5 10°
5
s
o
102 -
10 1
1 I
0 0.2
2 1
QA)
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A\

Kinematical - Parratt comparison

Kinematical approximation gives a reason-
1 ably good approximation to the correct cal-
culation, with a few exceptions.

o
5 10° Parratt calculation gives Rp,, = 1as @ — 0
'Ig while kinematical diverges (R, — 00).
102 .
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1 I
0 0.2
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Kinematical - Parratt comparison A

Kinematical approximation gives a reason-
- 1 ably good approximation to the correct cal-
culation, with a few exceptions.

é 10° Parratt calculation gives Rp,, = 1as @ — 0
E while kinematical diverges (R, — 00).
o
10~ N Parratt peaks shifted to slightly higher val-
ues of @
10* - 1
. !
0 02
QA"
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Kinematical - Parratt comparison 7

RMultilayer

1

Carlo Segre (lllinois Tech)

Kinematical approximation gives a reason-
ably good approximation to the correct cal-
culation, with a few exceptions.

Parratt calculation gives Rp,, = 1as @ — 0
while kinematical diverges (R, — 00).

Parratt peaks shifted to slightly higher val-
ues of @

Peaks in kinematical calculation are some-
what higher reflectivity than true value.
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Multilayer design V

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ~ 2 degrees with
0.5% and 1.0% bandwidth

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Common design parameters include bilayer filler fraction I' = 0.5, roughness ¢ = 0.35 nm, and
number of bilayers N = 300
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Multilayer design V

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ~ 2 degrees with
0.5% and 1.0% bandwidth

Common design parameters include bilayer filler fraction I' = 0.5, roughness ¢ = 0.35 nm, and
number of bilayers N = 300
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A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600 (2018).

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 September 16, 2021 12 /27



Multilayer design

0.5% and 1.0% bandwidth

A\

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ~ 2 degrees with

Common design parameters include bilayer filler fraction I' = 0.5, roughness ¢ = 0.35 nm, and

number of bilayers N = 300
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A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600 (2018).
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Multilayer design

0.5% and 1.0% bandwidth

A\

Materials for multilayer monochromator chosen to reflect 12 keV x-rays at ~ 2 degrees with

Common design parameters include bilayer filler fraction I' = 0.5, roughness ¢ = 0.35 nm, and

number of bilayers N = 300

MoSiz/B4C and Mo/B4C were selected for the 0.5%

respectively

100
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g 7 MoSi2/B4C
g 0 §
TilB4AC
65 S VIB"AC I cm?r{'Mg
60 CrlBAC« «

1 105 11 115 12 125 13 135 14 145 15
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and 1.0% bandwidth coatings,
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A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600 (2018).
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Multilayer fabrication & testing \ 7
The 0.5% and 1.0% bandwidth layers were de-

posited side-by-side on a monolithic 20 mm x 30
mm x 100 mm polished silicon block

Mo/B,C

\Iu.\&i:"BIC

100 mm

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600 (2018).
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Multilayer fabrication & testing

The 0.5% and 1.0% bandwidth layers were de-
posited side-by-side on a monolithic 20 mm x 30
mm x 100 mm polished silicon block

Mo/B,C

MoSi/B C

100 mm

Reflectivity (linearly-scaled)

A\

MoSi,/B C

Mo/B C

118 1185 1.9 1195 12 1206 121 1215 122
Theta (degrees)

When illuminated with 12 keV x-rays the two multilayers showed diffraction peaks at nearly
the same angle. The reflectivities were both over 75% and the bandwidths were 0.52% and

0.86%, respectively.

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600 (2018).
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Multilayer spectrum

Reflectivity
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The reflectivity over a wide range
of angles at 8 keV shows total ex-
ternal reflection at low angles with
cutoff at zero degrees

A. Khounsary et al, “A dual-bandwidth multilayer
monochromator system,” Proc. SPIE 10760, 107600j
(2018).
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Multilayer spectrum

Reflectivity

MoSi,/B €

Carlo Segre (lllinois Tech)

Theta (degrees)
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i

PHYS 570 - Fall 2021

The reflectivity over a wide range
of angles at 8 keV shows total ex-
ternal reflection at low angles with
cutoff at zero degrees

First and second order multilayer
diffraction peaks appear at higher
angles

A. Khounsary et al, “A dual-bandwidth multilayer
monochromator system,” Proc. SPIE 10760, 107600j
(2018).

September 16, 2021
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Graded interfaces V

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.
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Graded interfaces

Carlo Segre (lllinois Tech)

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.

The reflectivity of this kind of interface can be calculated
best in the kinematical limit (Q > Q).
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Graded interfaces \d

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.

1 f(Z) The reflectivity of this kind of interface can be calculated
best in the kinematical limit (Q > Q.).

The density profile of the interface can be described by
the function f(z) which approaches 1 as z — .
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Graded interfaces \d

Since most interfaces are not sharp, it is important to be
able to model a graded interface, where the density, and
therefore the index of refraction varies near the interface
itself.

The reflectivity of this kind of interface can be calculated
best in the kinematical limit (Q > Q).

The density profile of the interface can be described by
the function f(z) which approaches 1 as z — .

The reflectivity can be computed as the superposition of
the reflectivity of a series of infinitesmal slabs of thickness
dz at a depth z.
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Reflectivity of a graded interface A\

The differential reflectivity from a slab of thick-
ness dz at depth z is:
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Reflectivity of a graded interface A\
2
6r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
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Reflectivity of a graded interface v}"

Carlo Segre (lllinois Tech)

The differential reflectivity from a slab of thick-
ness dz at depth z is:

integrating, to get the entire reflectivity
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Reflectivity of a graded interface i

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
Q2 integrating, to get the entire reflectivity
r(Q) = ~iz0 f(z)eindz
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Reflectivity of a graded interface i

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
Q2 integrating, to get the entire reflectivity
r(Q) = 4Q f(z)e’dez integrating by parts simplifies
—00
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Reflectivity of a graded interface i

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
) integrating, to get the entire reflectivity
r(Q) = Q f(z)eindz : : e

4Q - integrating by parts simplifies

.1 Q2 ;

f /de
IQ 20 (z)e'~*dz
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Reflectivity of a graded interface i

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
) integrating, to get the entire reflectivity
r(Q) = Q f(z)eindz ; ; Colif

4Q integrating by parts simplifies

1 Q2 .

f /de
IQ 20 (z)e'~*dz
Q2 iQz
= 40‘:2/_00 f'(z)e"*dz
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Reflectivity of a graded interface

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
Q2 integrating, to get the entire reflectivity
r(Q) = 4Q f(z)e’dez integrating by parts simplifies
1 Q2 0z the term in front is simply the Fresnel reflec-
,Q 4Q f (2)e™dz tivity for an interface, rr(Q) when g > 1
Q2 iQz
= 452/_00 f’(z)eQ dz
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Reflectivity of a graded interface

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
Q2 integrating, to get the entire reflectivity
r(Q) = 4Q f(z)e’dez integrating by parts simplifies
1 Q2 f iz the term in front is simply the Fresnel reflec-
,Q 4Q (z)e z tivity for an interface, rr(Q) when g > 1, the

integral is the Fourier transform of the density

2
_ 4%2 /_Oc f’(z)e’QZdz gradient, ¢(Q)
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Reflectivity of a graded interface

2
5r(Q) = _,& f(z)dz The differential reflectivity from a slab of thick-
4Q ness dz at depth z is:
Q2 integrating, to get the entire reflectivity
r(Q) = 4Q f(z)e’dez integrating by parts simplifies
1 Q2 f iz the term in front is simply the Fresnel reflec-
,Q 4Q (z)e z tivity for an interface, rr(Q) when g > 1, the

integral is the Fourier transform of the density

2
_ 4%2 /_Oc f’(z)e’QZdz gradient, ¢(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

SN AN
— '/OO (dz> e’ dz
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2




The error function - a specific case A

The error function is often chosen as a model for the density gradient

F(z) = erf(—2—) = = / e et dt
W20 VAo
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The error function - a specific case

The error function is often chosen as a model for the density gradient

F(z) = erf(—2—) = = / e et dt
W20 VAo

the gradient of the error function is simply a Gaussian

2

df(z)_ierf( z ) = 1 o i5
dz  dz V20 _W
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The error function - a specific case

The error function is often chosen as a model for the density gradient

F(z) = erf(—2—) = = / e et dt
W20 VAo

the gradient of the error function is simply a Gaussian
df(z) d ( z ) = 1 e_%(zf%
V20 V2mo?

= —er

dz dz
whose Fourier transform is also a Gaussian, which when squared to obtain the reflection
coefficient, gives.

R(Q) = Rr(Q)e~ ¥
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The error function - a specific case

The error function is often chosen as a model for the density gradient

F(z) = erf(—2—) = = / e et dt
W20 VAo

the gradient of the error function is simply a Gaussian
df(z) d ( z ) = 1 e_%(zf%
V20 V2mo?

= —er

dz dz
whose Fourier transform is also a Gaussian, which when squared to obtain the reflection
coefficient, gives. Or more accurately.

R(Q) = Re(Q)e™ ¥ = Re(Q)e 9
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The error function - a specific case

The error function is often chosen as a model for the density gradient

F(z) = erf(—2—) = = / e et dt
W20 VAo

the gradient of the error function is simply a Gaussian
df(z) d ( z ) = 1 e_%(zf%
V20 V2mo?

= —er

dz dz
whose Fourier transform is also a Gaussian, which when squared to obtain the reflection
coefficient, gives. Or more accurately.

R(Q) = Re(Q)e™ ¥ = Re(Q)e 9

Q = ksind, Q =k'sin¢
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Rough surfaces V
When a surface or interface is not perfectly smooth but has some roughness the reflectivity is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.
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Rough surfaces

A\

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.
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Rough surfaces

A\

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V.
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Rough surfaces

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from

/9; the entire, illuminated volume is given by an integral,
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no longer simply specular but has a non-zero diffuse component which we must include in the
model.



Rough surfaces

Carlo Segre (lllinois Tech)

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral,

= n [ (pde®”,
Vv
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Rough surfaces \

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from

the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

V ry = ro/ (pd?)eié'F,
v
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Rough surfaces \

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from

the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)eié'F, / (6.6) d?:/ac@
%4 %4 S
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Rough surfaces V

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)eié'F, / (6.6) d?:/ac@
%4 %4 S

Taking C to be
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Rough surfaces V

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)eié'F, / (6.6) d?:/ac@
%4 %4 S

.é.‘;
Taking C to be C = 2e.’ r7
iQ;
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Rough surfaces \

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)eié'F, / (6.6) d?:/ac@
%4 %4 S

.é.‘;
Taking C to be C = 2e.’ r7
iQ;

its divergence is
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Rough surfaces \

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
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Rough surfaces

\d

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

Taking C to be
its divergence is
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The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

ry = ro/ (pd?)eié'F, / (6 : (__:> dr = / C-dS
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When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

Taking C to be
its divergence is
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The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.
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Rough surfaces v

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)e"@'?, / (6.6) d?:/ac@
%4 %4 S

.é.ﬁ
Taking C to be C = 2e.’ r7 . i
IQZ IQz

its divergence is

v ;€97 d7
ry = —K | z— r
%4 OP/V iQ,
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Rough surfaces

\d

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

Taking C to be
its divergence is

. el QF
ry = —n V |z -
p/v iQ;
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The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

ry = ro/ (pd?)eié'F, / (6 : (_f> dr = / C-dS
v v s

. elQ~r
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Rough surfaces v

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is
no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)e"@'?, / (6.6) d?:/é.c@
%4 %4 S
AeiQF

=2= C= =i
iQ ’ iQ;

Taking C to be C
its divergence is
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Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity

\d

is

no longer simply specular but has a non-zero diffuse component which we must include in the
model.

The incident and scattered angles are no longer the same,
the x-rays illuminate the volume V. The scattering from
the entire, illuminated volume is given by an integral, which
can be solved using Gauss' theorem.

Y, n o= ro/(pd?)e"@'?, / (6.6) d?:/é.c@
%4 %4 S
AeiQF

=2= C= =i
iQ ’ iQ;

Taking C to be C
its divergence is

ry = —n /6 Eeia? dr = —r / QEI’@'? dS = —r 1/le"@'Fdxd =r
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Rough surfaces

A\

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by
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Rough surfaces V

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by
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Rough surfaces V

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by

Using Gauss' theorem, this volume integral
can be converted to an integral over the sur-
face of the illuminated volume.
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Rough surfaces vV

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by

Using Gauss' theorem, this volume integral
can be converted to an integral over the sur-
\Y face of the illuminated volume.

rg = —ropl_Q Lei@’Fdxdy
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Rough surfaces \

Reflection from a rough surface leads to some amount of diffuse scattering on top of the
specular reflection from a flat surface. The scattering from an illuminated volume is given by

Using Gauss' theorem, this volume integral
can be converted to an integral over the sur-
face of the illuminated volume.

This integral is highly model dependent and

i0-F 3 can now be evaluated for a number of dif-
rv=—np | e d’r
Y ferent cases.

1 .3
iQ-r
— | &' "dxd
iQ; /s Y
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Evaluation of surface integral Y
The side surfaces of the volume do not contribute to this integral as they are along the z

direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the z

direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

Thus, the integral need only be evaluated over the

N /e' top, rough surface whose variation we characterize
1 2

by the function h(x, y)
Vv

1 a
rg = —rOpI_Q/Se’Q"dxdy
z
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the z

direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

Thus, the integral need only be evaluated over the

N /e' top, rough surface whose variation we characterize
1 2

by the function h(x, y)
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the z

direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

Thus, the integral need only be evaluated over the

N /e' top, rough surface whose variation we characterize
1 2

by the function h(x, y)

v G- 7= Quhlx,y) + Qux + Qy

1

rg = —ropl_(?/seié'?dxdy = —I_rOQp/Seinh(X’Y)ei(QXx+ny)dxdy
z z
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Evaluation of surface integral Y

The side surfaces of the volume do not contribute to this integral as they are along the z
direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

Thus, the integral need only be evaluated over the

/' top, rough surface whose variation we characterize
91\A 6, by the function h(x,y)

v Q7= Q:h(x,y) + Qux + Quy
1 = ) )
rS — _ropi / elQ'dedy — _rop/ eIth(va)el(QxX+ny)dxdy
iQ: Js iQz Js
do
g "
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Evaluation of surface integral VY
The side surfaces of the volume do not contribute to this integral as they are along the z

direction, and we can also choose the thickness of the slab sufficiently large such that the
lower surface will not contribute.

i~ ><_%,

Thus, the integral need only be evaluated over the
top, rough surface whose variation we characterize
by the function h(x,y)

Q7= Qh(x,y) + Qux+ Qyy

1 . . .
rS rOp IQ / IQdedy — _IrOQp/ eleh(va)el(QxX+ny)dxdy
z z

Z—g—rs_ <r0p> // iQz(h(x,y)—h(x",y ))eiQx(X—X/)eiQy(y—y’)dXdde/dy/
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Scattering cross section VY

If we assume that h(x,y) — h(x’,y’) depends only on the relative difference in position, x — x’
and y — y’ the four dimensional integral collapses to the product of two two dimensional
integrals
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Scattering cross section VY

If we assume that h(x,y) — h(x’,y’) depends only on the relative difference in position, x — x’
and y — y’ the four dimensional integral collapses to the product of two two dimensional

integrals
do\ _ (rop iQ:(h(0.0)~h(x,Y))\ 4iQux 4iQyy
<dQ>_< ) /ldxdy/ > ¥Y dxdy
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Scattering cross section \ i

If we assume that h(x,y) — h(x’,y’) depends only on the relative difference in position, x — x’
and y — y’ the four dimensional integral collapses to the product of two two dimensional

integrals
do\ _ (rop iQ:(h(0.0)~h(x,Y))\ 4iQux 4iQyy
<dQ>_< ) /ldxdy/ > ¥Y dxdy

2
([ rp Ao iQ:(h(0,0)—h(x,y)) \ LiQux AiQyy
— <Q2> 7sin91 /<e >e e’ dxdy
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Scattering cross section

If we assume that h(x,y) — h(x’, y’) depends only on the relative difference in position, x — x
and y — y’ the four dimensional integral collapses to the product of two two dimensional

integrals
do\ _ (rop iQ:(h(0.0)~h(x,Y))\ 4iQux 4iQyy
<dQ>_< ) /ldxdy/ > ¥Y dxdy

2
_ (rr\" Ao iQz(h(0.0)~h(x.y)) \ oiQux 4iQyy
= <Qz> Sn 6 /<e > e *e™Y dxdy

where Ag/sinf; is just the illuminated surface area
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Scattering cross section \ i

If we assume that h(x,y) — h(x’,y’) depends only on the relative difference in position, x — x’
and y — y’ the four dimensional integral collapses to the product of two two dimensional

integrals
do\ _ (rop iQ:(h(0.0)~h(x,Y))\ 4iQux 4iQyy
<dQ>_< ) /ldxdy/ > ¥Y dxdy

2
_ (rr\" Ao 1Q2(h(0,0)~h(x.y)) \ @iQcx giQyy
= <Qz> Sn 6 /<e >e e dxdy

where Ag/sinf; is just the illuminated surface area and the term in the angled brackets is an
ensemble average over all possible choices of the origin within the illuminated area.
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Scattering cross section \ i

If we assume that h(x,y) — h(x’,y’) depends only on the relative difference in position, x — x’
and y — y’ the four dimensional integral collapses to the product of two two dimensional

integrals
do\ _ (rop iQ:(h(0.0)~h(x.y)) | 4iQux 4iQyy
()= () o oo ) e
p\* Ao Q- (h(0,0)—h(x,y)) \, wiQex i@
— [ 2E iQz ,0)—h(x,y IQxx SiQyy
<Q2> sin01/<e >e e dxdy

where Ag/sinf; is just the illuminated surface area and the term in the angled brackets is an
ensemble average over all possible choices of the origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are Gaussian and

do\  (rnp\® Ao / —Q2([h(0,0)—h(x )P} /2 piQsx 1iQyy
(dQ>_<QZ> sinfy ) © e e dxdy
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Limiting Case - Flat surface N

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sint, | € e e dxdy
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Limiting Case - Flat surface i

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sint, | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

dU o rop 2 AO / iQXX ’-ny
<dQ> N <Qz> sin 01 e dxdy

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 September 16, 2021 22/27



Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

dU o rop 2 AO / iQXX ’-ny
270(q) = /e’qxdx <dQ> N <Qz> sin 01 e dxdy
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

_ do\ _ (10 Ao [ i@ gy
2775(q):/e’qxdx dQ) \Q,) sinb; y
2
A
=(r5p) 0 5(Q.)5(Qy)

sin 64
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dQ>_<QZ> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

dU . np 2 AO / iQyx ’-ny
270(q) = /e’qxdx <dQ> N <Qz> sin 01 e axdy
the expression for the scattered intensity _ [ hop > Ao 5(@)8(Q,)
in terms of the momentum transfer wave Q:) sinfy T

vectors is
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
<d9>_<02> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

do rp 2 Ao
) — — P iQxx iny
218(q) = /e’qxdx <dQ> <Qz> sin 0 /e e dxdy
2

the expression for the scattered intensity _ [ for Ao 5(Q)5(Q))
in terms of the momentum transfer wave Q. ) sinfy d
vectors is

| — /0 do AQXAQy

s Ao dQ2 k2 sin 92
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
<d9>_<02> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

dU . np 2 AO / iQyx ’-ny
270(q) = /e’qxdx <dQ> N <Qz> sin 01 e axdy
the expression for the scattered intensity _ [ hop > Ao 5(@)8(Q,)
in terms of the momentum transfer wave Q:) sinfy T

vectors is

(k) (do\ AQAQ, e (@28 1V
= () () emnny. — R@=5=(%") (on)
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Limiting Case - Flat surface

do\ [(rp > Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
<d9>_<02> sing; | € e e dxdy

Define a function g(x,y) = <[h(0, 0) — h(x,y)]2> which can be modeled in various ways.
For a perfectly flat surface, h(x,y) = 0 for all x and y.

by the definition of a delta function

dU . np 2 AO / iQyx ’-ny
270(q) = /e’qxdx <dQ> N <Qz> sin 01 e axdy
the expression for the scattered intensity _ [ hop > Ao 5(@)8(Q,)
in terms of the momentum transfer wave Q:) sinfy T

vectors is

() (do AQAQR, e (@28 1V QY
= () (68) Sy — =% (%) (a) - (5.)
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Uncorrelated surfaces VYV

do\ _ (ropY Ao —Q2([h(0,0)~ h(x,y)P) /2 giQux 4iQyy
(6) = (8) o 99y
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Uncorrelated surfaces i

Qz sin 91

For a totally uncorrelated surface, h(x, y) is independent from h(x’, y’) and

2
(;’;’2) _ <f0ﬂ) Ao / e~ Q2 (1h(0.0)~h(x.9 ) /241 610, gl
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Uncorrelated surfaces i

do\ _ (ropY Ao / Q2{[M0.0)—h(x )P} /2 i Qux iy
(dﬂ) - <Qz) sinty J © e ddy

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

(1h(0,0) = h(x, y)I*) = (h(0,0))> = 2(h(0,0)) (h(x, ) + (h(x,))?
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Uncorrelated surfaces i

do\ _ (ropY Ao / Q2{[M0.0)—h(x )P} /2 i Qux iy
(dﬂ) - <Qz) sinty J © e ddy

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()
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Uncorrelated surfaces iid

do\ [(rp 2 Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dﬂ) - <QZ> sinty J € e ady

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()

This quantity is related to the rms roughness, o by 02 = <h2> and the cross-section is

() -
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Uncorrelated surfaces

do\ [(rp 2 Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dﬂ) - <QZ> sinty J € e ady

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()

This quantity is related to the rms roughness, o by 02 = <h2> and the cross-section is

da _ (for ¢ A /e—Q§<h2>/2eiQXxeinydXd
dQ Q, ) sinf, Y
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Uncorrelated surfaces

do\ [(rp 2 Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dﬂ) - <QZ> sinty J € e ady

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()

This quantity is related to the rms roughness, o by 02 = <h2> and the cross-section is

do np 2 AO _02<h2>/2 iQ iQy np 2 AO — Q202 iQ iQ,
R — — - z 1Wx X 41 d d — V- v 70 1WxX 41 yyd d
(dQ) <Qz> sin@l/e e e xay Q, sin«91e /e € xay
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Uncorrelated surfaces

do\ [(rp 2 Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dﬂ) - <QZ> sinty J € e ady

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()

This quantity is related to the rms roughness, o by 02 = <h2> and the cross-section is

i A / -G 210 g0y gy — (0P A0 -2 / e'@x el dxd
_ — —_— - z e X e — —_— - z X
dQ2 Q, ) sinf; € y Q, ) sinf; y

Which, apart from the term containing o is simply the Fresnel cross-section for a flat surface
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Uncorrelated surfaces

do\ [(rp 2 Ao / —Q2([h(0,0)—h(x.y)I*} /2 LiQux AiQyy
(dﬂ) - <QZ> sinty J € e ady

For a totally uncorrelated surface, h(x, y) is independent from h(x’,y’) and

([h(0.0) = h(x, Y)I?) = (h(0,0))> =2 (h(0,0)) (h(x,y)) + (h(x,y))* =2 ()

This quantity is related to the rms roughness, o by 02 = <h2> and the cross-section is

do np 2 AO —Q2<h2>/2 iQ iQy np 2 AO — Q202 iQ iQ,
R — — - z 1Wx X 41 d d — V- v 70 1WxX 41 yyd d
(dQ) <Qz> sin@l/e e e xay Q, sin«91e /e € xay

Which, apart from the term containing o is simply the Fresnel cross-section for a flat surface

( do > ( do > Q202
R — _ e z
dQ dQ Fresnel
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Surface roughness effect V

< do ) < do ) Q202
) = 2= o @
df2 dQ Fresnel
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Surface roughness effect

< do ) < do ) Q202
- — - e z
d2 df2 Fresnel

for a perfectly flat surface, we get the
Fresnel reflectivity derived for a thin slab
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Surface roughness effect i

() (&),
d2 df2 Fresnel

for a perfectly flat surface, we get the
Fresnel reflectivity derived for a thin slab

for an uncorrelated rough surface, the
reflectivity is reduced by an exponen-
tial factor controlled by the rms surface
roughness o

o=3A
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Surface roughness effect V

10 — 1 T 1 T ' T
<dff) _ <dff> o Q20 A=68A
df2 d2 Fresnel i G=OA |
for a perfectly flat surface, we get the
Fresnel reflectivity derived for a thin slab \
10°F .

for an uncorrelated rough surface, the
reflectivity is reduced by an exponen-
tial factor controlled by the rms surface T c=3A ]
roughness o

c=6A
. : : . 10" .
this leads to a rapid drop in reflectivity
as the surface roughness increases o 0'.2 ' 0f4 ' ol.s Y I
2-1
Q(A")
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Correlated surfaces A

do\ _ (rop > A —Q2{[h(0,0)~h(x,y)I?) /2 HiQux HiQyy
(dQ) = <Qz> sin 6 /e e e™Y dxdy
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Correlated surfaces iid

do\ _ (rop\ Ao —Q2([h(0,0)~h(x))IP) /2 i@ niQyy
(dQ) = <Qz> sinfy /e e *e™rYdxdy

Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,

g(x,y) =g(r) = g(vx*+y?)
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Correlated surfaces VY

do\ _ (rop\ Ao —Q2([h(0,0)~h(x))IP) /2 i@ niQyy
(dQ) = (Qz> sinfy /e e *e™rYdxdy

Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,
g(x,y) = g(r) = g(vVx*+y?)

In the limit that the correlations are unbounded as r — oo, g(x, y) is given by g(x,y) = Ar?h
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Correlated surfaces V'

do 0\ A0 [ Q2(IN00) Gy P)/2 i Qex Gy
- — _— - z ) ) X d d
(dQ) (Qz> sin¢91/e e e xay
Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,
g(x,y) = g(r) = g(vVx*+y?)

In the limit that the correlations are unbounded as r — oo, g(x, y) is given by g(x,y) = Ar?h
where h is a fractal parameter which defines the shape of the surface.
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Correlated surfaces V'

do\  (rpY Ao —Q2([h(0,0)~h(x))IP) /2 i@ niQyy
<m>_<Qz> 5”]91/6 e e ded_y

Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,
g(x,y) = g(r) = g(vVx*+y?)

In the limit that the correlations are unbounded as r — oo, g(x, y) is given by g(x,y) = Ar?h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h < 1
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Correlated surfaces \ i

do 0\ A0 [ Q2(IN00) Gy P)/2 i Qex Gy
- — _— - z ) ) X d d
(dQ) (Qz) sin¢91/e e e xay
Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,
g(x,y) = g(r) = g(vVx*+y?)

In the limit that the correlations are unbounded as r — oo, g(x, y) is given by g(x,y) = Ar?h
where h is a fractal parameter which defines the shape of the surface.
jagged surface for h < 1 smoother surface for h — 1

If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate
the y-integral and have
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Correlated surfaces \ i

do 0\ A0 [ Q2(IN00) Gy P)/2 i Qex Gy
- — _— - z ) ) X d d
(dQ) (Qz) sin¢91/e e e xay
Assume that height fluctuations are isotropically correlated in the x-y plane. Therefore,
g(x,y) = g(r) = g(vVx*+y?)

In the limit that the correlations are unbounded as r — oo, g(x, y) is given by g(x,y) = Ar?h
where h is a fractal parameter which defines the shape of the surface.
jagged surface for h < 1 smoother surface for h — 1

If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate
the y-integral and have

o) _ (e} Ao [ e 2 cos( @,
dQ/) \Q,) sinb; X
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Unbounded correlations - limiting cases \

97) = (1m0) Lo [ etz cos( @)
dQ/) \Q,) sinb; x
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Unbounded correlations - limiting cases i

do\ _ (rep 2AO/e—ftQEIXI%/ZCOS(Q x)dx
dQ) \Q,) sinb X

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak.
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Unbounded correlations - limiting cases

do\ _ (rop 2AO/e—AQEIXI%/ZCOS(Q x)dx
dQ) \Q,) sinb X

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak.

h=1/2:

(dg) B <A0r02,02) A
dQ )  \2sinf ) (Q2+ (A/2)2Q%)
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Unbounded correlations - limiting cases \i

do\ _ (rp 27’40 /e_AQZZ|X|2h/2cos(Q x)dx
dQ )  \Q, sin 64 x

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak. o1

h=1/2: Lorentzian with half-width AQ2/2 m
do\ _ (Aorgr? A i o
dQ - 2 Sln 01 (Q)% + (A/2)2Q§) 00 10000

1000
-0.01 -0.005 0 0.005 001
Qx
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Unbounded correlations - limiting cases \

do\ _ (rp 27’40 /e_AQZZ|X|2h/2cos(Q x)dx
dQ )  \Q, sin 64 x

This integral can be evaluated in closed form for two special cases, both having a broad diffuse
scattering and no specular peak. o

h=1/2: Lorentzian with half-width AQ2/2 ODG
do\ _ (Aorgr? A i o
dQ - 2 Sln 01 (Q)% + (A/2)2Q§) 00 10000

1000
-0.01 -0.005 0 0.005 001
Qx

(da) _ (W) 1 -4(5)

dQ 2sinf; ) Q*
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Unbounded correlations - limiting cases

do\ _ (rp 27’40 /e_AQZZ|X|2h/2cos(Q x)dx
dQ )  \Q, sin 64 x

This integral can be evaluated in closed form for two special cases, both having a broad diffuse

| -

scattering and no specular peak.

h=1/2: Lorentzian with half-width AQ2/2
do\ [ Aorgp? A
dQ)  \2sinf ) (Q2+ (A/2)2Q%)

h=1: Gaussian with variance AQ?2

(da) B <2ﬁA0r§p2> ief%(;’é)

dQ )\ 2sin6; ) @
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Bounded correlations VYV

do\ _ (100 Ao [ Q2([h0.0)-hiey))/2.1Qux iQyy
(dQ) N <Qz> sin 61 /e e e dxdy
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Bounded correlations V'

do\ _ (100 Ao [ Q2([h0.0)-hiey))/2.1Qux iQyy
(dQ) N <Qz> sin 61 /e e e dxdy

If the correlations remain bounded as r — oo
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Bounded correlations i
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Bounded correlations i
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Bounded correlations iid

do\ _ (100 Ao [ Q2([h0.0)-hiey))/2.1Qux iQyy
(dQ) N <Qz> sin 61 /e e e dxdy

If the correlations remain bounded as r — oo

g(x,y) = 2(h*) = 2(h(0,0)h(x.y)) = 20°> —2C(x,y), C(x,y) = o%e (/&

do\ _ (10 Ao g / cQC00) i@ QY
dQ) \Q,) sinb; s
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Bounded correlations

do\  (rp\ Ao —Q2([h(0,0)~h(x))IP) /2 iQex niQyy
(dS))_((Qz) 5”]91/6 e e ded_y

If the correlations remain bounded as r — oo

g(x,y) =2(h*) = 2(h(0,0)h(x.y)) = 20% — 2C(x,y), C(x,y) = o2e=(r/e)*

do np 2 Ao 2 2 2 p ;
< > = <) e_QZU /eQzC(X’y)e’QXxe’nydXdy

dQ Q; sin 61
2 2 A 2 2 2 1 i
_ (1r)" Aoz / (€€ 14 1] %% ddy
Q, ) sinf;

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 September 16, 2021 27 /27



Bounded correlations

do\ _ (100 Ao [ Q2([h0.0)-hiey))/2.1Qux iQyy
(dQ) N (Qz> sin 61 /e e e dxdy

If the correlations remain bounded as r — oo

g(x,y) = 2(h*) = 2(h(0,0)h(x.y)) = 20°> —2C(x,y), C(x,y) = o%e (/&

do np 2 Ao 2 2 2 - i
< > = <) e_QZU /eQzC(X’y)e’QXxe’nydXdy

dQ Q; sin 61
2 2 A 2 2 2 1 i
_ (1r)" Aoz / (€260 14 1] e ddy
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Bounded correlations

do\ _ (100 Ao [ Q2([h0.0)-hiey))/2.1Qux iQyy
(dQ) N <Qz> sin 61 /e e e dxdy

If the correlations remain bounded as r — oo
g(x,y) = 2(h*) = 2(h(0,0)h(x.y)) = 20°> —2C(x,y), C(x,y) = o%e (/&

2

T o~ Q0 2/eQEC(x,y)eiQxxe,'nydXdy
Q. ) sin 91
2
— @ —Q2 2 |: szc(X,Y) -1 1i| iQux 4iQyy
<Qz> sin 91 / € + 1| e e™Ydxdy
do v (r0): A0 g
= _ 7Q in 0 ,Qza. F )
(dQ>Fresnel <Qz> sinele dlffuse(Q)
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Bounded correlations

do\ _ (rp\ Ao —Q2([h(0,0)~h(x))IP) /2 iQex niQyy
(dS))_((Qz) 5”]91/6 e e ded_y

If the correlations remain bounded as r — oo

g(x,y) =2(h*) = 2(h(0,0)h(x.y)) = 20% — 2C(x,y), C(x,y) = o2e=(r/e)*

do\ _ (10 Ao g / cQC00) i@ QY
dQ) \Q,) sinb; s

2
— <r0p> Ao 6—02202/ [eQZZC(X,Y) 14 1} eiQXxeinydxdy

Qz Sin 91
do v (r0): A0 g
= —_— 7Qz0' in 0 ,Qza. F )
(dQ> Fresnel © * ( Qz> sin 01 ¢ dlffuse(Q)

And the scattering exhibits both a specular peak, reduced by uncorrelated roughness, and

diffuse scattering from the correlated portion of the surface
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