
Today’s outline - September 14, 2021

• Boundary conditions at an interface

• The Fresnel equations

• Reflectivity and Transmittivity

• Normalized q-coordinates

• Limiting cases of Fresnel equations

• Reflection from a thin slab

• Kiessig fringes

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02:
Problems on Blackboard
due Tuesday, September 21, 2021

Homework Assignment #03:
Chapter 3: 1,3,4,6,8
due Tuesday, October 05, 2021
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Index of refraction review

By comparing the scattering and refraction approaches the index of refaction in the x-ray
regime can be calculated.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ
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Index of refraction & critical angle

Consider an x-ray incident on an interface at angle α1 to
the surface

which is refracted into the medium of index
n2 at angle α2.

Applying Snell’s Law, and assuming that the incident
medium is “vacuum” (n1 = 1).

If we now apply the known form of the index of refraction
for the medium (n2 = 1− δ).

When the incident angle becomes small enough, there
will be total external reflection and cosα2 ≡ 1

α

x

z

1
n1

2n

n2 cosα2 = n1 cosα1 = cosα1

(1− δ) cosα2 = cosα1

1− δ = cosαc

1− δ = cosαc

= 1− αc
2

2
+ · · · ≈ 1− αc

2

2
−→ δ ≈ αc

2

2
−→ αc =

√
2δ

If δ ∼ 10−5 αc =
√

2× 10−5 = 4.5× 10−3 = 4.5 mrad = 0.26◦
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that
this is not correct, and that usually electron charge distributions are those of the atoms
making up the solid.

Therefore, it is useful to replace the uniform charge distribution, ρ, with
a more realistic one, including the atom distribution ρa:

ψP = ψP
0

[
1− i

2πρb∆

k

]

ρ = ρaf
0(θ = 90◦) k = 2π/λ

ψP = ψP
0

[
1− i

λρaf
0r0∆

sin θ

]

ψP = ψP
0 [1− ig0] ≈ ψP

0 e
−ig0

This holds for forward scattering (θ = 90◦ or ψ =
0◦) only, and a correction term of sin θ is needed
if the viewing angle is different.

The second term is the first order term in the ex-
pansion of a complex exponential and thus is noth-
ing more than a phase shift to the electromagnetic
wave.
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Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”) terms,
f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in the model for the index of
refraction.

Begin with Beer’s Law for absorption

In the refractive approach, the wave propagating
in the medium is modified by the index of refrac-
tion k ′ = nk so that

The real exponential can be compared with Beer’s
Law, noting that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

ψ′ = e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f ′′ term in the atomic
scattering factor:

n = 1− 2πρar0
k2

[
f 0(Q) + f ′ + if ′′

]
= 1− 2πρar0

k2

[
f 0(Q) + f ′

]
− i

2πρar0
k2

f ′′ = 1− δ + iβ

Since f 0(0) � f ′ in the forward direction,
we have

In terms of the absorption coefficient, µ, and
the atomic cross-section, σa

δ ≈ 2πρaf
0(0)r0

k2

β = −2πρaf
′′r0

k2
=

µ

2k

f ′′ = − k2

2πρar0

µ

2k
= − k

4πr0
σa
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Electromagnetic boundary conditions

Maxwell’s equations require that an electromagnetic wave and its derivative be continuous in
all directions at any interface. This condition places restrictions on the waves which exist at
any interface:

α

x

z
kI

which leads to conditions on the amplitudes and
the wave vectors of the waves at z = 0. Taking
vector components:

ψI = aI e
i ~kI ·~r incident wave

ψR = aRe
i ~kR ·~r reflected wave

ψT = aT e
i ~kT ·~r transmitted wave

aT = aI + aR

aT ~kT = aI ~kI + aR ~kR

aTkT cosα′ = aIkI cosα + aRkR cosα

− aTkT sinα′ = −aIkI sinα + aRkR sinα
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the wave vectors of the waves at z = 0.

Taking
vector components:

ψI = aI e
i ~kI ·~r incident wave

ψR = aRe
i ~kR ·~r reflected wave

ψT = aT e
i ~kT ·~r transmitted wave

aT = aI + aR

aT ~kT = aI ~kI + aR ~kR

aTkT cosα′ = aIkI cosα + aRkR cosα
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Parallel projection & Snell’s Law

Starting with the equation for the parallel
projection of the field on the surface and
noting that

Combining with the amplitude equation and
cancelling k

aT = aI + aR

This simply results in Snell’s Law which for
small angles can be expanded.

Recalling that αc =
√

2δ

| ~kR | = |~kI | = k in vacuum

| ~kT | = nk in medium

aTkT cosα′ = aIkI cosα + aRkR cosα

aTnk cosα′ = aIk cosα + aRk cosα

(aI + aR)n cosα′ = (aI + aR) cosα

cosα = n cosα′

1− α2

2
= (1− δ + iβ)

(
1− α′ 2

2

)
−→ α2 = α′ 2 + α2

c − 2iβ
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Perpendicular projection & Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

and using the amplitude
equation

aT = aI + aR

taking n ≈ 1

The Fresnel Equations can now
be derived

− aTkT sinα′ = −aIkI sinα + aRkR sinα

− aTnk sinα′ = −(aI − aR)k sinα

(aI + aR)n sinα′ = (aI − aR) sinα

aI − aR
aI + aR

=
n sinα′

sinα
≈ n

α′

α
≈ α′

α

aIα− aRα = aIα
′ + aRα

′

aI (α− α′) = aR(α + α′)

→ r

aI (α− α′) = (aT − aI )(α + α′)

→ t

r =
aR
aI

=
α− α′

α + α′
, t =

aT
aI

=
2α

α + α′
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Reflectivity and transmittivity

r and t are called the reflection and
transmission coefficients, respectively.

The
reflectivity R = |r2| and transmittivity
T = |t2| are the squares of these quantities,
which are complex because α′ is complex.

α′ = Re(α′) + i Im(α′)

aT e
ikα′z = aT e ik Re(α′)z e−k Im(α′)z

Λ =
1

2k Im(α′)

r =
aR
aI

=
α− α′

α + α′

t =
aT
aI

=
2α

α + α′

In the z direction, the amplitude of the
transmitted wave has two terms with the
second one being the attenuation of the
wave in the medium due to absorption. This
attenuation is characterized by a quantity
called the penetration depth, Λ.
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Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector
transfer.

Q = 2k sinα ≈ 2kα

and for the critical angle
Qc = 2k sinαc ≈ 2kαc

in dimensionless units, these become

q =
Q

Qc
≈ 2k

Qc
α q′ =

Q ′

Qc
≈ 2k

Qc
α′

q is a convenient parameter to use because it is a combination of two parameters which are
often varied in experiments, the angle of incidence α and the wavenumber (energy) of the
x-ray, k .
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Defining equations in q

Start with the reduced version of Snell’s
Law

and multiply by a 1/α2
c = (2k/Qc)2.

Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k
=

2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and trans-
mission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′
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Limiting cases - q � 1

Starting with Snell’s Law

rearrange and simplify for q � 1 and
real

this implies Re(q′) ≈ q, while the
imaginary part can be computed by
assuming

comparing to the equation above

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(
1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµ
q

The reflection and transmission coefficients are thus

r =
(q − q′)(q + q′)

(q + q′)(q + q′)
=

q2 − q′ 2

(q + q′)2
≈ 1

(2q)2
, t =

2q

q + q′
≈ 1 , Λ ≈ α

µ

the reflected wave is in phase with the incident wave, almost total transmission
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Limiting cases - q � 1

Starting with Snell’s Law again

when q � 1, q′ is mostly imaginary with mag-
nitude 1 since bµ is very small

thus the reflection and transmission coefficients
become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q

′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only small transmission in
the form of an evanescent wave, and the penetration depth is very short.
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Limiting cases - q ∼ 1

Using Snell’s Law, with q ∼ 1,

adding and subtracting bµ,

q′ is complex with real and imagi-
nary parts of equal magnitude.

since
√
bµ � 1, the reflection and

transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1) = bµ(1 + i)2

q′ ≈
√
bµ(1 + i)

r=
(q − q′)

(q + q′)
≈ q

q
≈ 1

t=
2q

q + q′
≈ 2q

q
= 2

Λ ≈ 1

Qc Im(q′)
≈ 1

Qc

√
bµ

The reflected wave is in phase with the incident, there is significant (larger amplitude than the
reflection) transmission with a large penetration depth.
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Review of interface effects

We have covered the interface boundary conditions which govern the transmission and
reflection of waves at a change in medium.

These result in the Fresnel equations which we
rewrite here in terms of the momentum transfer.

n
0

n
1

r=
Q − Q ′

Q + Q ′

t=
2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to
absorption. We now consider what happens if there is a second interface encountered by the
transmitted wave before it dies away. That is, a thin slab of material on top of an infinite
substrate
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Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflection coefficients at each
interface are labeled:

n
0

n
1

r
01

t
01

∆

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events
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Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

n
0

n
1

n
2

∆

r01

+
t01r12t10

· p2

+
t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal. This adds a phase
shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab
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Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2
∞∑

m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′
, t =

2Q

Q + Q ′
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2
∞∑

m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term from
all the rest

summing the geometric series as
previously

The individual reflection and transmission coefficients can be determined using the Fresnel
equations. Recall

r =
Q − Q ′

Q + Q ′
, t =

2Q

Q + Q ′
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Fresnel equation identity

Applying the Fresnel equations to the top interface

n
0

n
1

r
10

t
10

∆ r01 =
Q0 − Q1

Q0 + Q1

r10 =
Q1 − Q0

Q1 + Q0
= −r01

t01 =
2Q0

Q0 + Q1

t10 =
2Q1

Q1 + Q0

we can, therefore, construct the following identity

r2
01 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2
+

2Q0

Q0 + Q1

2Q1

Q1 + Q0
=

Q2
0 − 2Q0Q1 + Q2

1 + 4Q0Q1

(Q0 + Q1)2

=
Q2

0 + 2Q0Q1 + Q2
1

(Q0 + Q1)2
=

(Q0 + Q1)2

(Q0 + Q1)2
= 1
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Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p
2 1

1− r10r12p2

= r01 +
(
1− r2

01

)
r12p

2 1

1− r10r12p2

=
r01 + r2

01r12p
2 +

(
1− r2

01

)
r12p

2

1− r10r12p2

rslab =
r01 + r12p

2

1 + r01r12p2
=

r01

(
1− p2

)
1− r2

01p
2

Using the identity

t01t10 = 1− r2
01

Expanding over a common denomina-
tor and recalling that r10 = −r01.

In the case of n0 = n2 there is the
further simplification of r12 = −r01.
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Kiessig fringes

p2 = e iQ1∆

rslab =
r01

(
1− p2

)
1− r2

01p
2

If we plot the reflectivity

Rslab = |rslab|2

These are the so=-called Kiessig fringes
which arise from interference between re-
flections at the top and bottom of the slab.
They have an oscillation frequency

2π/∆ = 0.092Å
−1

0 0.2 0.4 0.6 0.8 1
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