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® Approximate the electron’s path as a series of
segments
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emits radiation
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(c-v)At «—»

A

The electron travels the distance from B to C in At’ while the light pulse emitted at B travels
further, cAt’, in the same time.
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Segmented arc approximation V

CAY’
AL ) ® Approximate the electron’s path as a series of
v ;o segments
® At each corner the electron is accelerated and

B C\, emits radiation
: e Consider the emissions at points B and C

A (C-V)AL «—

The electron travels the distance from B to C in At’ while the light pulse emitted at B travels
further, cAt’, in the same time.

The light pulse emitted at C is therefore, a distance (c — v)At’ behind the pulse emitted at B.
The observer will measure a time between the two pulses:

(c —v)AY
c

At = - (1 - %) At = (1 - B)AL
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The light pulse emitted at A still travels cAt/, in the same time.
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The light pulse emitted at B is therefore, a distance (¢ — v cos a)At’ behind the pulse emitted
at A.
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CAY
VoSO ét’

Consider the emission from segment AB, which is
not along the line toward the observer. While on
the AB segment, the electron moves only a distance
vcosaAt’ in the direction of the BC segment.

(c-vcosa)At’

The light pulse emitted at A still travels cAt/, in the same time.
The light pulse emitted at B is therefore, a distance (¢ — v cos a)At’ behind the pulse emitted
at A. The observer will measure a time between the two pulses:

At — (c — vecosa)At

o _ v I _ . /
c = (1 c cosa) At' = (1 — fcosa)At
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CAt
vcosa At

At = (1 — pBcosa)At’

(c-vcosa)At’
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Radiation opening angle V

The Doppler shift is defined in terms of the time
compression ratio

fAY 292

I At 1+ a22
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v=5871

L | | | L
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o (radians)
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Radiation opening angle

The Doppler shift is defined in terms of the time
compression ratio

f At 272

Tes08 7=13699 FAt Tt
Ay - ] e For APS and NSLS Il the Doppler blue
e - shift is between 107 and 10°
B ® The dashed lines indicate where

1e+07 F
: a = =+1/v and f/f"is half it's maximum

® The highest energy emitted radiation
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v=5871

-0.001 '_0_0|005 (I) 0_0605 ~0.001 ® | ower energies appear above.and below
o (radians) the plane of the electron orbit
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Curved arc emission Y
But instantaneously, the compression ratio is:

At
At lat—0
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But instantaneously, the compression ratio is:

At dt

— =—=1-[cosa

At'lat—so  dt’ b
this allows us to treat the electron path as a continuous
arc.
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Curved arc emission
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But instantaneously, the compression ratio is:

At dt

At'lacso  dtl 1-fcosa

this allows us to treat the electron path as a continuous
arc.

An electron moving in a constant magnetic field describes
a circular path

2

dp v
FLorentz =evB a= E = ?

myv = p = peB
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Electron bending radius vV

mv = p = peB

but the electron is relativistic so we must correct the
momentum to retain consistent laws of physics p — ymv
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Electron bending radius v

mv = p = peB

but the electron is relativistic so we must correct the
momentum to retain consistent laws of physics p — ymv
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Electron bending radius v

mv =p = peB

but the electron is relativistic so we must correct the
momentum to retain consistent laws of physics p — ymv

ymv = peB

at a synchrotron vy > 1lso v = ¢
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Electron bending radius v

mv =p = peB

but the electron is relativistic so we must correct the
momentum to retain consistent laws of physics p — ymv

ymv = peB

at a synchrotron vy > 1lso v = ¢

ymec~ peB  —  ymc? & pecB

since £ = ymc? and ¢ = 2.998 x 108m/s? we have

&Ml EleV] E[GeV]
© ecB[T]  ¢B[T] 3.336 B[T]
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Curved arc emission V

The observer, looking in the plane of the circular trajectory,
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The observer, looking in the plane of the circular trajectory,
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).
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Curved arc emission
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

At = (1/7)p

14
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Curved arc emission
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

% Yo
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

At = (1/7)p _ 1

% Yo

Because of the Doppler shift, the observer sees the electron
emitting a pulse of radiation of length
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

At — (1/7)p _ 1

% Yo

Because of the Doppler shift, the observer sees the electron
emitting a pulse of radiation of length

At
v
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The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

At — (1/7)p _ 1

% Yo

Because of the Doppler shift, the observer sees the electron
emitting a pulse of radiation of length

At 1
Atoc—5 =3 —
2 7w
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Curved arc emission
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Carlo Segre (lllinois Tech)

A\

The observer, looking in the plane of the circular trajectory,
“sees” the electron oscillate over a half period in a time At
(observer's frame).

The electron, in the laboratory frame, travels this arc in:

% Yo

Because of the Doppler shift, the observer sees the electron
emitting a pulse of radiation of length

At 1
Atoc =5 =3~
7 Pwo
The Fourier transform of this pulse is the spectrum of the ra-
diation from the bending magnet.
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Characteristic Energy of a Bending Magnet \ i

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:
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Characteristic Energy of a Bending Magnet \ i

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:
3 3

We = E’Y wo
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Characteristic Energy of a Bending Magnet \ 7

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3

We = E’Y wo

but since T is the period of the rotation through the full circle of radius p
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Characteristic Energy of a Bending Magnet \ 7

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3
We = E’Y wo
but since T is the period of the rotation through the full circle of radius p
27
wo = ?
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Characteristic Energy of a Bending Magnet \ 7

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

We = 3 3w
c — 27 0
but since T is the period of the rotation through the full circle of radius p
27 c
Y
o T 7T27Tp
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Characteristic Energy of a Bending Magnet \ 7

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3
We = E’Y wo
but since T is the period of the rotation through the full circle of radius p
27 c c ceB
O T T T me
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Characteristic Energy of a Bending Magnet

A\

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3
We = E’Y wo
but since T is the period of the rotation through the full circle of radius p
27 c c ceB
O T T T me

we can therefore calculate the characteristic energy &
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, w. which
when the calculation is performed rigorously is:

We 3 3w
2’Y 0
but since T is the period of the rotation through the full circle of radius p
27 _ c c ceB
Wwp=—=2—=— = ——
0 T 2tp p  ymc
we can therefore calculate the characteristic energy &
3 ceB
c = hwc = *h S—
2 ymc
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,

when the calculation is performed rigorously is:

w —§3w
c—2’Y 0

but since T is the period of the rotation through the full circle of radius p

27 5 c c ceB
wyp = — = T = — = —
0 T 2tp p  ymc
we can therefore calculate the characteristic energy &
3 ceB 3 72
Ec = hwe = ~hy?—— = “hceB——
¢ c= " ymc 2 e mc

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

September 02, 2021 10/23



Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,

when the calculation is performed rigorously is:

w —§3w
c—2’Y 0

but since T is the period of the rotation through the full circle of radius p

27 5 c c ceB
wyp = — = T = — = —
0 T 2tp p  ymc
we can therefore calculate the characteristic energy &
3 ceB 3 v?  3heB &2
Ec = hwe = ~hy3—— = ZheeB-— =
‘ c= 2" ymec 2 “Cmc T 2m (mc?)?
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3
We = E’Y wo
but since T is the period of the rotation through the full circle of radius p
27 c c ceB
O T T T me

we can therefore calculate the characteristic energy &

3 ceB 3 v?  3heB &2
= hw, = ~h~3 = =
£ <=2 yme 2 “C e 2m (mc?)?

converting to storage ring units
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Characteristic Energy of a Bending Magnet

<

The radiation from a bending magnet is defined by it's characteristic frequency, w. which,
when the calculation is performed rigorously is:

3 3
We = E’Y wo
but since T is the period of the rotation through the full circle of radius p
27 c c ceB
O T T T me

we can therefore calculate the characteristic energy &

3 ceB 3 v?  3heB &2
= hw, = ~h~3 = =
£ <=2 yme 2 “C e 2m (mc?)?

converting to storage ring units
Ec[keV] = 0.665E%[GeV]B[T]
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Bending magnet spectrum V

ALS 1.9GeV 13T
301t NsLSI 3.0GeV 04T
When the radiation pulse time is Fourier ! ESRF-EBS 6.0GeV 05T A
transformed, we obtain the spectrum of a 2.5H APS 70GeV 06T
bending magnet. APS-U 6.0GeV 06T 1

no
o

1.5

1.0

0.5

Flux [photons/sec/0.1% bw] x10*'°

0'00 20 40 60 80 100

Energy [keV]
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Bending magnet spectrum V

ALS 1.9GeV 13T
301t NsLSI 3.0GeV 04T
When the radiation pulse time is Fourier ! ESRF-EBS 6.0GeV 05T A
transformed, we obtain the spectrum of a 2.5H APS 70GeV 06T
bending magnet. APS-U 6.0GeV 06T 1

no
o

Scaling by the characteristic energy,

gives a universal curve 1.5

1.0

0.5

Flux [photons/sec/0.1% bw] x10*'°

0'00 20 40 60 80 100

Energy [keV]
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Bending magnet spectrum v/

ALS 3.1 keV
When the radiation pulse time is Fourier 3.0 NSLS Il 24 keV ]
transformed, we obtain the spectrum of a ESRF-EBS  11.3keV
2.5 APS 19.4keV

bending magnet.

APS-U 15.6 keV

[s2]
o
=)
k™
3
Ke]
3°
. . . 20
Scaling by the characteristic energy, %
gives a universal curve 3 15
2
i)
510
=2
x
=05
(T
0'00 2 4
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Bending magnet spectrum

When the radiation pulse time is Fourier
transformed, we obtain the spectrum of a
bending magnet.

Scaling by the characteristic energy,
gives a universal curve

2
13 02 w 2 w
1.33 x 1013 /<wC) K33 <2w6)

where Ky /3 is a modified Bessel function of
the second kind.

Flux [photons/sec/0.1% bw] x10*"°
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APS 19.4 keV
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Power from a bending magnet N

The radiated power is given in storage ring units by:
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Power from a bending magnet i

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10'3)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.05*mrad?)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW

The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)?
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)?(0.8T)?
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)?(0.8T)?(1.24 x 10~3m)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)?(0.8T)?(1.24 x 1073m)(0.2A)
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Power from a bending magnet

The radiated power is given in storage ring units by:
P[kW] = 1.266£2[GeV]B?[T]L[m]/[A]

where L is the length of the arc visible to the observer and [ is the storage ring current.

We can calculate this for the ESRF where £ =6 GeV, B=0.8 T, £&. = 19.2 keV and the
bending radius p = 24.8 m. Assuming that the aperture is 1 mm? at a distance of 20 m, the
angular aperture is 1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95 x 10*®)(0.052mrad?)(6°GeV?)(0.2A) = 3.5 x 10*ph/s/0.1%BW
The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)?(0.8T)?(1.24 x 1073m)(0.2A) = 7.3W
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Polarization Y

A bending magnet also produces circularly polarized radiation

2 T
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Polarization 73

A bending magnet also produces circularly polarized radiation

® |f the observer is in the plane of the electron orbit,
the electron motion looks like a half period of
linear sinusoidal motion

<
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Polarization j

A bending magnet also produces circularly polarized radiation

® |f the observer is in the plane of the electron orbit,
ﬁ the electron motion looks like a half period of
linear sinusoidal motion
3
® From above, the motion looks like an arc in the

clockwise direction
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Polarization 73

A bending magnet also produces circularly polarized radiation

® |f the observer is in the plane of the electron orbit,
the electron motion looks like a half period of
linear sinusoidal motion

® From above, the motion looks like an arc in the
clockwise direction

4 ® From below, the motion looks like an arc in the
counterclockwise direction
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Polarization V'

A bending magnet also produces circularly polarized radiation

® |f the observer is in the plane of the electron orbit,
the electron motion looks like a half period of
linear sinusoidal motion

® From above, the motion looks like an arc in the
clockwise direction

4 ® From below, the motion looks like an arc in the
counterclockwise direction

The result is circularly polarized radiation above and below the on-axis radiation.
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Wigglers and undulators V

Wiggler
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Wigglers and undulators

Wiggler

Like bending magnet except:
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Wigglers and undulators V

Wiggler

Like bending magnet except:
® |arger B — higher E.
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Wigglers and undulators V

Wiggler

Like bending magnet except:
® |arger B — higher E.

® more bends — higher power
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Wigglers and undulators V

Wiggler Undulator

Like bending magnet except:
® |arger B — higher E.

® more bends — higher power
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Wigglers and undulators V

Wiggler Undulator

Like bending magnet except: Different from bending magnet:
® |arger B — higher E.

® more bends — higher power
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Wigglers and undulators V

Wiggler Undulator

Like bending magnet except: Different from bending magnet:
* larger B — higher E. ® shallow bends — smaller source

® more bends — higher power
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Wigglers and undulators V

Wiggler Undulator

Like bending magnet except: Different from bending magnet:
e larger B — higher E. ® shallow bends — smaller source
® more bends — higher power ® interference — peaked spectrum
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Wiggler radiation o

® The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

Power[kW] = 1.266£2[GeV]B?[T]L[m]/[A]
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Wiggler radiation 3
® The electron’s trajectory through a wiggler can be considered as a

series of short circular arcs, each like a bending magnet

® |f there are N poles to the wiggler, there are 2N arcs

Power[kW] = 1.266£2[GeV]B?[T]L[m]/[A]
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Wiggler radiation

® The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

® |f there are N poles to the wiggler, there are 2N arcs

® Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

Power[kW] = 1.266£2[GeV]B[T]L[m]/[A]
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Wiggler radiation

® The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

® |f there are N poles to the wiggler, there are 2N arcs

® Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

® The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = BO/\@

Power[kW] = 0.633£2[GeV] B3 [T]L[m]/[A]
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Wiggler radiation \ 7

® The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

® |f there are N poles to the wiggler, there are 2N arcs

® Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

® The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = BO/\@

® This results in a significantly higher power load on all downstream
components

Power[kW] = 0.633£2[GeV] B3 [T]L[m]/[A]
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Undulator characterization vV

X

4

Undulator radiation is characterized by three parameters:
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Undulator characterization A

X

4

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc?
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Undulator characterization A

XI 7\‘u

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc?

® The wavelength, A\, = 27/k,, of its
magnetic field
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Undulator characterization VYV

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc?

® The wavelength, A\, = 27/k,, of its
magnetic field

® The maximum angular deviaton of the
electron, amax
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Undulator characterization A

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, A\, = 27/k,, of its x = Asin (k,z)
magnetic field

® The maximum angular deviaton of the
electron, amax
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Undulator characterization A

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, A\, = 27/k,, of its x = Asin (k,z)
magnetic field N
max

® The maximum angular deviaton of the
electron, amax
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Undulator characterization V'

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, A\, = 27/k,, of its x = Asin (k,z)
magnetic field dx

) ) Omax = df
® The maximum angular deviaton of the Z12=0

electron, amax
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Undulator characterization V'

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, A\, = 27/k,, of its x = Asin (k,z)
magnetic field dx

. . Omax = df = Aku Ccos (kuz)
® The maximum angular deviaton of the Z1z=0 z=0

electron, amax
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Undulator characterization V'

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, \, = 27/k,,, of its x = Asin (k,z)
. . dX
magnetlc. field . Cmax = — = Ak, cos (k,z)
® The maximum angular deviaton of the Z 1z=0 z=0
electron, amax = Ak, = 2wA/\,
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Undulator characterization i

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, \, = 27/k,,, of its x = Asin (k,z)
. . d
magnetic field S ax — Ak, cos (k,z)
dz |z=0 z=0

® The maximum angular deviaton of the
electron, amax

= Ak, = 2A/\,

Define a dimensionless quantity, K which scales a,.x to the natural opening angle of the
radiation, 1/~
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Undulator characterization i

Undulator radiation is characterized by three parameters:

® The energy of the electrons, ymc? From the electron trajectory:
® The wavelength, \, = 27/k,,, of its x = Asin (k,z)
. . d
magnetic field S ax — Ak, cos (k,z)
dz |z=0 z=0

® The maximum angular deviaton of the
electron, amax = Ak, = 2wA/\,
Define a dimensionless quantity, K which scales a,.x to the natural opening angle of the

radiation, 1/~
K = amax?y
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Circular path approximation N

X A

Consider the trajectory of the electron along one period of the undulator.
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Circular path approximation N

X A

Consider the trajectory of the electron along one period of the undulator. Since the curvature
is small, the path can be approximated by an arc or a circle of radius p whose origin lies at
x=—(p—A)and z=0.
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Circular path approximation N

X A

Consider the trajectory of the electron along one period of the undulator. Since the curvature
is small, the path can be approximated by an arc or a circle of radius p whose origin lies at
x=—(p—A)and z=0.

The equation of the circle which approximates the arc is:
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Circular path approximation N

X A

Consider the trajectory of the electron along one period of the undulator. Since the curvature
is small, the path can be approximated by an arc or a circle of radius p whose origin lies at
x=—(p—A)and z=0.

The equation of the circle which approximates the arc is:

PP =[x+ (p— A+ 7
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Circular path approximation N

X A

Consider the trajectory of the electron along one period of the undulator. Since the curvature
is small, the path can be approximated by an arc or a circle of radius p whose origin lies at
x=—(p—A)and z=0.

The equation of the circle which approximates the arc is:

PP =[x+ (p— A+ 7
x4 (p— A) = V/i? — 22
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Radius of curvature vV

X A ,
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Radius of curvature V'

X A > 2 o
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Radius of curvature

X A
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Radius of curvature V'

X A 2

From the equation for a circle:

/ 2
z
X=A—p+p2—22=A—p+p 1—?
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Radius of curvature V'

X A > 2 o
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Radius of curvature V'

X A > 2 o

z2 1z2° 22
X=A-p+Vp—22=A-ptp/l-F=A-pt+tp(l-S= | RA-
p 2p 2p
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Radius of curvature V'

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:
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Radius of curvature

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:

z2 12° 72
X=A-p+Vp—22=A-ptp/l-F=A-pt+tp(l-S= | RA-
p 2p 2p

x = Acos (kyz)
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Radius of curvature

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:

z2 12° 72
X=A-p+Vp—22=A-ptp/l-F=A-pt+tp(l-S= | RA-
p 2p 2p

k2 2
x = Acos (kyz) = A (1 — “22>
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Radius of curvature VYV

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:

z2 12° 72
X=A-p+Vp—22=A-ptp/l-F=A-pt+tp(l-S= | RA-
p 2p 2p

k2 2 Ak2 2
X:ACOS(/(UZ)%A<1—1122> ~ u?
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Radius of curvature

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:

z2 1z2° 22
X=A-p+Vp?—22=A-ptp\l-5~A-ptp|ll-FZ— | ~A-
p 2p 2p

k2 2 Ak2 72
X:ACOS(/(UZ)%A<1—1122> ~ u?

Combining, we have
22 Ak2Z?
2p 2
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Radius of curvature

u P =[x+ (p— AP + 22

(- A=V 2

From the equation for a circle:

For the undulating path:

5 z2 12° 72
X=A—-p+Vp—z"=A—-p+p/l—-~A-p+pll—z5 ) ="A- —
P 2 p? 2p

2,2 2,2
X:ACOS(/(UZ)%A<1—I(UZ> ~ Ak,

2
Combining, we have
22 Ak2Z? 1
o= — S = Ak
2p 2 p
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Radius of curvature

u P =[x+ (p— AP + 22
x+(p—A) = VA 72

From the equation for a circle:

For the undulating path:

5 z2 12° 72
X=A—-p+Vp—z"=A—-p+p/l—-~A-p+pll—z5 ) ="A- —
p? 2 p? 2p

k2 2 Ak2 2
X:ACOS(/(UZ)%A<1—UZ> ~ u?

2
Combining, we have
22 Ak2Z? 1 1 A2
2p 2 p “ P= A2 ™ 4n2A
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Electron path length

The displacement ds of the electron can be ex- d
pressed in terms of the two coordinates, x and z is de
as:

dz
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Electron path length
The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z
as:

ds = \/(dx)? + (dz)?
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z
as:

d 2
ds = /(dx)? 4+ (dz)? = |1+ <d)z(> dz

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

Zj ox

az

September 02, 2021

19/23



Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z
as:

d 2
ds = /(dx)? 4+ (dz)? = |1+ <d)z(> dz

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

a _ d
dz dz

Acos k,z

September 02, 2021

19/23



Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as:

dz
dx\ 2 dx d :
ds = y/(dx)? 4+ (dz)?> =/1+ <dz> dz % dZAcos kuz Ak, sin k,z
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as:

dz
dx\ 2 dx d :
ds = y/(dx)? 4+ (dz)?> =/1+ (dz) dz % dZAcos kuz Ak, sin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d )
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz % dzA cos k,z Ak, sin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

Au 2
5>\u:/ \/1+<dx> dz
0 dZ

<
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d )
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz % dzA cos k,z Ak, sin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

A 2 A 2
u dx u 1 /dx
= 1/1 — ~ 14+ = —
S\ /0 +<dz> dz /0 [ +2<dz>]dz

<
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d
_ 2 2 _ @ el - _
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz pr dZAcosk wz = —Akysin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

2 Au A2k2
S)\u—/ 1+ dz~/ < ) dz—/ [1+ 2”sin2kuz]dz
0

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

September 02, 2021 19/23



Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d
_ 2 2 _ @ el - _
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz pr dZAcosk wz = —Akysin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

2 Ay A2k2
5)\”—/ 1+ dz~/ < > dz—/ [1+ 2“sin2kuz}dz
0
Au A2k2
:/0 [1+ > <2—2cos2k zﬂ dz
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d
_ 2 2 _ @ el - _
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz pr dZAcosk wz = —Akysin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

2 Au A2 k2
5)\”—/ 1+ dz~/ < > dz—/ [1+ 2“sin2kuz} dz
0

A 2,2 2,2 2
u Ack; Ak Ak, .
:/0 [1+ > <2—2cos2k zﬂ dz = [24— 4“z+ 5 sin 2k, z

Au

0
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : %
dx dx d
_ 2 2 _ @ el - _
ds = \/(dx)? + (dz)?2 =4 /1+ (dz) dz pr dZAcosk wz = —Akysin k,z

Now calculate the length of the path traveled by the electron over one period of the undulator

2 Au A2 k2
5)\”—/ 1+ dz~/ < > dz—/ [1+ 2“sin2kuz} dz
0

A 2,2 2,2 2
u Ak; Ak Ak, .
:/0 [1+ > <2—2cos2kz>}dz:[z+ 4“z+

Au

n2k,z

0
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : o
d d
ds — /(dx)2 + (dz2)? = 1+ (?Z) dz d)z< EACOSk uwZ = —Akysin k,z
Now calculate the length of the path traveled by the electron over one period of the undulator
2 A 242
S\, = / 1 —|— dz =~ / [ < > dz = / [1 + Azk“ sin? kuz} dz
V 0
A 2,2 2,2 2
u A%k Ak Ak, .
:/0 [1+ > <2—2cos2kz>}dz:[z+ 4“z+

A2K2
=X (1 y
(+5)
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : o
d d
ds — /(dx)2 + (dz2)? = 1+ (?Z) dz d)z< EACOSk uwZ = —Akysin k,z
Now calculate the length of the path traveled by the electron over one period of the undulator
2 A 242
S\, = / 1 —|— dz =~ / [ < > dz = / [1 + Azk“ sin? kuz} dz
V 0
A 2,2 2,2 2
u A%k Ak Ak, .
:/0 [1+ > <2—2cos2kz>}dz:[z+ 4“z+

- (1+57)
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Electron path length

The displacement ds of the electron can be ex-

pressed in terms of the two coordinates, x and z dis de
as: : o
d d
ds — /(dx)2 + (dz2)? = 1+ (?Z) dz d)z< EACOSk uwZ = —Akysin k,z
Now calculate the length of the path traveled by the electron over one period of the undulator
2 A 242
S\, = / 1 —|— dz =~ / [ < > dz = / [1 + Azk“ sin? kuz} dz
V 0
A 2,2 2,2 2
u A%k Ak Ak, .
:/0 [1+ > <2—2cos2kz>}dz:[z+ 4“z+ n2k,z

0
=X 14+ —2) =) 1+E
B 4 B 4
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

_ _ 0
“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

_ _ 0
“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

_ _ 0
“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv = ymc
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

_ _ 0
“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv = ymc = peBy
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

_ _ 0
“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv~ymc=peBy — ymc= LeBg

u
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
= T/{E — p = Kk,
Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv~ymc=peBy — ymc= LeBg

u

Combining the above expressions yields

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021 September 02, 2021 20/23



The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
= T/{E — p = Kk,
Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv~ymc=peBy — ymc= LeBg

u

Combining the above expressions yields

eBo
mck,
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The K parameter V

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
= T/{E — p = Kk,
Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

p=ymv~ymc=peBy — ymc= LeBg

u

Combining the above expressions yields

eBy e

=—)\,B
mck, 2mmc " 0
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The K parameter 7

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 ~

/

“akk 0 PT kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

"/
B
K, &0

u

p=ymv~ymc=peBy — ymc=

Combining the above expressions yields

eBy e

s 2WCAUBO = 0.934)\,[cm]By[T]
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The K parameter \ 7

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
a0 T Kk,

Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

p

"/
B
K, &0

u

p=ymv~ymc=peBy — ymc=

Combining the above expressions yields

eBy e

s 2WCAUBO = 0.934)\,[cm]By[T]

For APS Undulator A, A, = 3.3cm and By = 0.6T at closed gap, so
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The K parameter

i

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
= — e ) =
P~ Ak2 P~ Kk,
Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

"/
B
K, &0

u

p=ymv~ymc=peBy — ymc=

Combining the above expressions yields

eBy e

s 2chuBo = 0.934)\,[cm]By[T]

For APS Undulator A, A, = 3.3cm and By = 0.6T at closed gap, so
K =0.934 - 3.3[cm] - 0.6[T]
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The K parameter

i

Given the definition K = vAk,, we can rewrite the radius of curvature of the electron’s path in
the undulator as

1 v
= — e ) =
P~ Ak2 P~ Kk,
Recalling that the radius of curvature is related to the electron momentum by the Lorentz
force, we have

"/
B
K, &0

u

p=ymv~ymc=peBy — ymc=

Combining the above expressions yields

eBy e

s 2chuBo = 0.934)\,[cm]By[T]

For APS Undulator A, A, = 3.3cm and By = 0.6T at closed gap, so
K =0.934 -3.3[cm] - 0.6[T] = 1.85
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

A

u
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Undulator wavelength

A\

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

M
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

A X The emitted wave travels slightly
= faster than the electron

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

September 02, 2021 21/23



Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

The emitted wave travels slightly
faster than the electron

moving cT’ in the time the electron
travels a distance A, along the undu-
lator
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

The emitted wave travels slightly
faster than the electron

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

The observer sees radiation with a compressed

wavelength, AL
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Undulator wavelength vV

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

The emitted wave travels slightly
faster than the electron

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

The observer sees radiation with a compressed

wavelength, AN =cT =)\,
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Undulator wavelength i

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

\ The emitted wave travels slightly

) faster than the electron
/\ 7\«u / 27:2 |

The observer sees radiation with a compressed
wavelength, along with harmonics which satisfy
the same condition.

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

)\1 = CT,—)\UZ2A2
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Undulator wavelength 7

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

\ The emitted wave travels slightly

) faster than the electron
/\ 7\«u / 27:2 |

The observer sees radiation with a compressed
wavelength, along with harmonics which satisfy
the same condition.

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

)\1 = CT,—)\UZ2A2 = n)\n
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Undulator wavelength i

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

\ The emitted wave travels slightly

) faster than the electron
/\ A, / 27:2 E

The observer sees radiation with a compressed
wavelength, al.o.ng with harmonics which satisfy M= T — My = 200 = 1),
the same condition.

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

The fundamental wavelength must be corrected
for the observer angle 0 from the centerline of the

undulator
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Undulator wavelength i

Consider an electron traveling through the undulator and emitting radiation at the first
maximum excursion from the center.

\ The emitted wave travels slightly

) faster than the electron
/\ A, / 27:2 E

The observer sees radiation with a compressed
wavelength, al.o.ng with harmonics which satisfy M= T — My = 200 = 1),
the same condition.

moving cT’ in the time the electron
travels a distance A, along the undu-
lator

The fundamental wavelength must be corrected
for the observer angle 0 from the centerline of the

undulator
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The fundamental wavelength

A\

The fundamental wavelength emitted from

the undulator depends on the photon prop-
agation time, T’

M =T —)\,cosb
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The fundamental wavelength S

The fundamental wavelength emitted from A =T — )\ cosb
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y,s0 T'=S)\,/v
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The fundamental wavelength V

SA
The fundamental wavelength emitted from M =T —Xycos =" — )\, cosb
the undulator depends on the photon prop- v
agation time, T’

In a time T’ the electron travels a distance
SA\y,s0 T'=S)\,/v
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The fundamental wavelength V

SA
The fundamental wavelength emitted from M =T —Xycos =" — )\, cosb
the undulator depends on the photon prop- v

agation time, T’ =\ (5E — cos 0>
v

In a time T’ the electron travels a distance
SA\y,s0 T'=S)\,/v
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The fundamental wavelength V

SAy
The fundamental wavelength emitted from M =T —X,cosf === — )\, cosf

the undulator depends on the photon prop- v
. . , c S
agation time, T = Ay (57 — cos 0> = Ay <ﬁ — cos 0)
v
In a time T’ the electron travels a distance

SA\y,s0 T'=S)\,/v
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The fundamental wavelength

The fundamental wavelength emitted from

the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
K2

S~14+—
42

Carlo Segre (lllinois Tech) PHYS 570 - Fall 2021

Ay
M =T —)\,cos6 = 5— — Ay cosf

v

B

A\

= Ay (5% — cos&) = Ay (5 — c050>
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The fundamental wavelength V

SAy
The fundamental wavelength emitted from M =T —X,cosf === — )\, cosf

the undulator depends on the photon prop- c v 5
agation time, T’ =\, (57 — cos 0> =\ (5 — cos 0)
v
In a time T’ the electron travels a distance K271 1
SA\y, s0 T"=S5X\,/v and we know that = Ay <[1 + 472} B — cos 9)
K2
S~1+-—
T
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The fundamental wavelength V

SAy
The fundamental wavelength emitted from M =T —X,cosf === — )\, cosf
the undulator depends on the photon prop- c v 5
agation time, T’ =\, (5; — cos 0> =\ (5 — cos 6)
In a time T’ the electron travels a distance K271 1
SA\y, s0 T"=S5X\,/v and we know that = Ay <[1 + 472} 3 — cos 9)
K2
~14+-—
S + 12

Since «y is large, the maximum observation
angle 6 is small so
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The fundamental wavelength V

SA
The fundamental wavelength emitted from M =T —Xycos =" — )\, cosb
the undulator depends on the photon prop- c v 5
agation time, T’ =\, (57 — cos 0> =\ (5 — cos 6)
v

In a time T’ the electron travels a distance K271 1
SA\y, s0 T"=S5X\,/v and we know that = Ay <[1 + 472} E — cos 9)

K2

S~14 — 1 K? 62

42 Aleu(Jrz —1+)

Since «y is large, the maximum observation B 4B 2

angle 6 is small so
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
S~1+ LS
42
Since «y is large, the maximum observation
angle 6 is small so

Carlo Segre (lllinois Tech) PHYS 570 -
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v

c S
=\ (5;—cos€> = Ay <ﬁ—c056>
K211
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A <[ +4”y2} 3 cosH)
1 K? 62
MMl —— -1+ —
1 u (,6 +4’}/2,B + 2)
Regrouping and substituting ...
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
S~1+ LS
42
Since «y is large, the maximum observation
angle 6 is small so

)\U 2 )2 K2 2 22
1 272 < 3 + o3 0 e
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
S~1+ LS
42
Since «y is large, the maximum observation
angle 6 is small so

)\U 2 )2 K2 2 22
1 272 < 3 + o3 0 o
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
Salt
42
Since «y is large, the maximum observation
angle 6 is small so

<

Ay
M =T —)\,cos6 = 5— — Ay cosf

v

c S
= Ay (5;—cos€> = Ay <ﬁ—cose>
K211
—)\u<[1+4ﬁy2}6—c059>
1 K? 62
Alz)\u(+—1+

B 4B

Regrouping and substituting ..

Ao (297 K? Ay 1 K?2
o3 ()« (] o)
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
Salt
42
Since «y is large, the maximum observation
angle 6 is small so

<

Ay
M =T —)\,cos6 = 5— — Ay cosf

v

c S
= Ay (5;—cos€> = Ay <ﬁ—cose>
K211
—)\u<[1+4ﬁy2}6—c059>
1 K? 62
Alz)\u(+—1+

B 4B

Regrouping and substituting ..

Ao (297 K? Ay 1 K?2
w3 ()« (] o)
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
Salt
42
Since «y is large, the maximum observation
angle 6 is small so

Ao (297 K?
AL = u2 <7+—272+7202>~

Y 1 [1-5] K
G

Carlo Segre (lllinois Tech)

)
2 (o 2] + - o)
(o)

PHYS 570 - Fall 2021

<

Ay
M =T —)\,cos6 = 5— — Ay cosf

v

c S
= Ay (5;—cos€> = Ay <ﬁ—cose>
K211
:)\u<[1+472} 5_(:059)

1 K2 62
Mad (24— 1
! “(ﬂﬂm "

Regrouping and substituting ..

September 02, 2021 22/23



The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
Salt
42
Since «y is large, the maximum observation
angle 6 is small so

Ao (297 K?
AL = u2 <7+—272+7202>~

. 2
L (o 1 [1=8] K
22 \“1-32| 8 283
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K211
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The fundamental wavelength

The fundamental wavelength emitted from
the undulator depends on the photon prop-
agation time, T’

In a time T’ the electron travels a distance
SA\y, s0 T"=S5X\,/v and we know that
2
Salt
42
Since «y is large, the maximum observation
angle 6 is small so

22\ B 28

Ao (2 K?
A= <7+—272+7202> ~

. 2
e (p L [1=8], K
22 \“1—32 | 5 | 28
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Ay
M =T —)\,cos6 = 5— — Ay cosf

v

c S
= Ay (5;—cos€> = Ay <ﬁ—cose>
K211
:)\u<[1+472} 5_(:059)

1 K2 62
PVRSD W NIAN R
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The fundamental wavelength vV

l

Ay 2 K? 5
A1N2_'y2<ﬁ(1+ﬁ)+ﬁ_( "))
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The fundamental wavelength Y
If we assume that 3 ~ 1 for these highly relativistic electrons

A 2 K? )
A“’2ﬂy2(ﬁ(1+6)+25_(’“’))
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The fundamental wavelength N

If we assume that 3 ~ 1 for these highly relativistic electrons

X2 K> Y K2,
Al““z%(ﬁ(lw)*zﬁ_”a))'”M(”zﬁ (9)>
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The fundamental wavelength i
If we assume that 3 ~ 1 for these highly relativistic electrons

ey 2 K> Y K2

and directly on axis
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

X2 K> Y K2,
A1“’2v2<ﬁ(1+6)+2ﬁ_(”9)>'”M(”zﬁ (9)>

and directly on axis
o (1 K2
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate
2 x 1072 (1)
MR ——— |1+
L2 (10%)2 < T
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
o (1 K2
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate
2 %1072 (1)? ~10
MAR (142 ) =15x10 = 1.5A
L™ 5 (10%)2 < T 8 m
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
A &~ Au 1+ K
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate

2 %1072 (1)? ~10
A1%2(104)2<1+2> =15 x10""m = 1.5A

This corresponds to an energy £; ~ 8.2keV but as the undulator gap is widened
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
A &~ Au 1+ K
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate

2 %1072 (1)? ~10
A1%2(104)2<1+2> =15 x10""m = 1.5A

This corresponds to an energy £; ~ 8.2keV but as the undulator gap is widened,
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
A &~ Au 1+ K
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate

2 %1072 (1)? ~10
A1%2(104)2<1+2> =15 x10""m = 1.5A

This corresponds to an energy £; ~ 8.2keV but as the undulator gap is widened, ,
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
A &~ Au 1+ K
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate

2 %1072 (1)? ~10
A1%2(104)2<1+2> =15 x10""m = 1.5A

This corresponds to an energy £; ~ 8.2keV but as the undulator gap is widened, ,
, A\1 decreases
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The fundamental wavelength i

If we assume that 3 ~ 1 for these highly relativistic electrons

Y 2 K> AU K2
e (i o 0) <25 (5 - 09)

and directly on axis
A &~ Au 1+ K
1702 2

for a typical undulator v ~ 10%, , and A\, ~ 2cm so we estimate

2 %1072 (1)? ~10
A1%2(104)2<1+2> =15 x10""m = 1.5A

This corresponds to an energy £; ~ 8.2keV but as the undulator gap is widened, ,
, A1 decreases, and &7 increases.
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