
Today’s outline - April 16, 2020 (part A)

• Imaging

• Computed tomography

Homework Assignment #7:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

Final Exam, Tuesday, May 5, 2020 13:00 CDT

Tell me what time slot you would prefer for your presen-
tation (first come, first served!)
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before the exam
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Phase difference in scattering
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All imaging can be broken into a
three step process

1. x-ray interaction with sample

2. scattered x-ray propagation

3. interaction with detector

The scattered waves from O and P
will travel different distances

In the far field, the phase difference
is φ ≈ ~Q ·~r with ~Q = ~k ′ − ~k

Since ~k ⊥ ~r , φ ≈ ~Q ·~r = ~k ′ ·~r

The path length difference corresponding to this phase shift is k̂ ′ · r = OF ′
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Franuhofer, Fresnel, and contact regimes
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The path length difference computed with the far field approximation has
a built in error of ∆ = FF ′ which sets a scale for different kinds of imaging

∆ = R − R cosψ

≈ R

(
1−

[
1− ψ2

2

])
= R

a2

2R2
=

a2

2R

R � a2

λ
Fraunhofer

R ≈ a2

λ
Fresnel

R � a2

λ
Contact
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Detector placement
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If λ = 1 Å and the distance to be resolved is a = 1 Å, then a2/λ = 1 Å
and any detector placement is in the Fraunhofer (far field) regime

if a = 1µm, then a2/λ = 10 mm and the imaging regime can be selected
by detector placement

if a = 1 mm, then a2/λ = 10 km and the detector will always be in the
contact regime
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Contact to far-field imaging

ideal phase object

ideal absorption object
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Radiography to tomography

Radiography started immedi-
ately after the discovery of
x-rays in 1895.

In 1970
Computer Tomography revo-
lutionized x-ray imaging

Assume the object to be im-
aged has a non uniform ab-
sorption coefficient µ(x , y)
The line integral of the ab-
sorption coefficient at a par-
ticular value of x ′ is mea-
sured as the ratio of the
transmitted to the incident
beam

I = I0e
−

∫
µ(x ,y)dy ′

ln

(
I0
I

)
=

∫
µ(x , y)dy ′

The radon transform R(θ, x ′) is used to reconstruct the 3D absorption
image of the object numerically.
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Fourier slice theorem

Start with a general function
f (x , y) which is projected onto the
x-axis

the Fourier transform of the projec-
tion is

p(x) =

∫
f (x , y)dy

P(qx) =

∫
p(x)e iqxxdx

What is the relationship of the Fourier transform, P(qx), to the original
function, f (x , y)? The Fourier transform of f (x , y) is F (qx , qy ) and by
choosing qy ≡ 0, we get a slice

F (qx , qy ) =

∫ ∫
f (x , y)e iqxx+iqyydxdy

F (qx , qy = 0) =

∫ [∫
f (x , y)dy

]
e iqxxdx =

∫
p(x)e iqxxdx = P(qx)

The Fourier transform of the projection is equal to a slice through the
Fourier transform of the object at the origin in the direction of propagation
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Fourier transform reconstruction

Fourier transform

Slice

F (qx , qy ) =
sin(qxx)

qxx

sin(qyy)

qyy
P(qx) =

sin(qxx)

qxx
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Sinograms
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Medical tomography
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Today’s outline - April 16, 2020 (part B)

• Fresnel zone plate review

• Wavefield propagation
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Focusing optics

The primary requirement for all types of microscopy at a synchrotron is
the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple
ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and
Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

• have the smallest spot sizes

• can be used with a broad range of energies

• can be used for both focusing and imaging
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Fresnel zone plate review

The mth zone radiates x-rays that arrive at the focus with a phase shift of
mπ = mλ/2 relative to the incident beam

and the radius of the mth zone
can be calculated
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2 =
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Fresnel zone plate review

rm ≈
√
mλf , ∆rM ≈

√
λf

2
√
M
, f ≈ 4M

(∆rM)2

λ

The diameter of the zone
plate is

D = 2rM = 2
√
Mλf

= 2
√
M
√
λf = 4M∆rM

using the Rayleigh criterion
for resolvability

fD

∆x = 1.22
λf

D
= 1.22

λf

4M∆rM
= 1.22

(∆rM)2

∆rM
= 1.22∆rM

The resolution of a zone plate is determined by the width of the outermost
ring and fabrication considerations limit this to ∼ 20 nm
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Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system

start with a monochromatic plane wave propagating in the z direction,
described by the function e ikz with wavelength λ = 2π/k

when the wavefront passes through an optical element or a sample, it is
distorted such that the wavefield at z = 0 is now a function of the
transverse dimensions, x and y : ψ0(x , y)

our goal is to determine the wavefield at a distance z downstream and this
is done by constructing a propagation operator D̂z such that

ψz = D̂zψ0(x , y)

The Fourier transform is used to generate this propagation operator in the
following way (showing only the x dependence for simplicity)

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx
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Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx , ψ̃0(kx) =

∫
ψ0(x)e ikxxdx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ

We can rewrite the relationships as follows but if kx � k we have

kz =
√

k2 − k2x ≈ k − k2x
2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz = ψ̃0e
−ikxxe ikze−ik

2
x z/2k = ψ̃z(kx)e−ikxx

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx
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We can rewrite the relationships as follows but if kx � k we have

kz =
√
k2 − k2x

≈ k − k2x
2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz = ψ̃0e
−ikxxe ikze−ik

2
x z/2k = ψ̃z(kx)e−ikxx

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

C. Segre (IIT) PHYS 570 - Spring 2020 April 16, 2020 17 / 20



Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx , ψ̃0(kx) =

∫
ψ0(x)e ikxxdx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ
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Wavefield propagation

The wavefield propagated along the ẑ direction from 0 to z is thus (still
ignoring the ŷ direction)

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

=
1

2π

∫
ψ̃0(kx)e ikze−ik

2
x z/2ke−ikxxdkx

= e ikz
1

2π

∫ [∫
ψ0(kx)e ikxxdx

]
e−ik

2
x z/2ke−ikxxdkx

= e ikzFT −1
[
e−ik

2
x z/2kFT [ψ0(x)]

]
and writing the complete solution in two dimensions

ψz(x , y) = e ikz FT −1
[
e−iz(k

2
x+k2

y )/2k FT [ψ0(x , y)]
]

= D̂zψ0(x , y)
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Wavefield propagation

ψz(x , y) = e ikz FT −1
[
e−iz(k

2
x+k2

y )/2k FT [ψ0(x , y)]
]

Since the final inverse Fourier Transform is taken on the product of two
functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions

ψz(x , y) = e ikzP(x , y) ∗ ψ0(x , y)

P(x , y) =
1

(2π)2

∫ ∫
e−iz(k

2
x+k2

y )/2kdxdy = −i k

2πz
e−ik(x

2+y2)/2z

ψz(x , y) = −i ke
ikz

2πz

[
e−ik(x

2+y2)/2z
]
∗ ψ0(x , y)

This convolution can be easily evaluated numerically if the initial wavefield
at the optic is known

One example is the comparison between a phase Fresnel zone plate and an
absorption Fresnel zone plate
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