Today's outline - April 16, 2020 (part A)

Today's outline - April 16, 2020 (part A)

- Imaging

Today's outline - April 16, 2020 (part A)

- Imaging
- Computed tomography

Today's outline - April 16, 2020 (part A)

- Imaging
- Computed tomography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

Today's outline - April 16, 2020 (part A)

- Imaging
- Computed tomography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020
Final Exam, Tuesday, May 5, 2020 13:00 CDT

Today's outline - April 16, 2020 (part A)

- Imaging
- Computed tomography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020
Final Exam, Tuesday, May 5, 2020 13:00 CDT
Tell me what time slot you would prefer for your presentation (first come, first served!)

$13: 00$	$14: 00$	$15: 00$	$16: 00$	$17: 00$	$18: 00$
$13: 20$	$14: 20$	$15: 20$	$16: 20$	$17: 20$	$18: 20$
$13: 40$	$14: 40$	$15: 40$	$16: 40$	$17: 40$	$18: 40$

Today's outline - April 16, 2020 (part A)

- Imaging
- Computed tomography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020
Final Exam, Tuesday, May 5, 2020 13:00 CDT
Tell me what time slot you would prefer for your presentation (first come, first served!)

$13: 00$	$14: 00$	$15: 00$	$16: 00$	$17: 00$	$18: 00$
$13: 20$	$14: 20$	$15: 20$	$16: 20$	$17: 20$	$18: 20$
$13: 40$	$14: 40$	$15: 40$	$16: 40$	$17: 40$	$18: 40$

Send me your presentation in Powerpoint or PDF format before the exam

Phase difference in scattering

All imaging can be broken into a three step process

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample
2. scattered x-ray propagation

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample
2. scattered x-ray propagation
3. interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process

The scattered waves from O and P will travel different distances

1. x-ray interaction with sample
2. scattered x-ray propagation
3. interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample
2. scattered x-ray propagation

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$
3. interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample
2. scattered x-ray propagation
3. interaction with detector

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$
Since $\vec{k} \perp \vec{r}, \phi \approx \vec{Q} \cdot \vec{r}=\overrightarrow{k^{\prime}} \cdot \vec{r}$

Phase difference in scattering

All imaging can be broken into a three step process

1. x-ray interaction with sample
2. scattered x-ray propagation
3. interaction with detector

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$
Since $\vec{k} \perp \vec{r}, \phi \approx \vec{Q} \cdot \vec{r}=\overrightarrow{k^{\prime}} \cdot \vec{r}$

The path length difference corresponding to this phase shift is $\hat{k}^{\prime} \cdot r=\overline{O F^{\prime}}$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

$$
\approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right)
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

$$
\begin{aligned}
& \approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right) \\
& =R \frac{a^{2}}{2 R^{2}}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

$$
\begin{aligned}
& \approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{array}{rlrr}
\Delta & =R-R \cos \psi & R & \ngtr \frac{a^{2}}{\lambda} \\
& \approx R\left(1-\left[1-\frac{\psi^{2}}{2}\right]\right) & & \text { Fraunhofer } \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{\lambda} & \text { Fresnel } \\
2 R & & R \ll \frac{a^{2}}{\lambda} & \text { Contact }
\end{array}
$$

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime if $a=1 \mu \mathrm{~m}$, then $a^{2} / \lambda=10 \mathrm{~mm}$ and the imaging regime can be selected by detector placement

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime if $a=1 \mu \mathrm{~m}$, then $a^{2} / \lambda=10 \mathrm{~mm}$ and the imaging regime can be selected by detector placement
if $a=1 \mathrm{~mm}$, then $a^{2} / \lambda=10 \mathrm{~km}$ and the detector will always be in the contact regime

Contact to far-field imaging

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895.

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a particular value of x^{\prime} is measured as the ratio of the transmitted to the incident beam

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a particular value of x^{\prime} is measured as the ratio of the transmitted to the incident beam

$$
I=I_{0} e^{-\int \mu(x, y) d y^{\prime}}
$$

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\ln \left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime}
\end{aligned}
$$

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-
 ticular value of x^{\prime} is measured as the ratio of the transmitted to the incident beam

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\ln \left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime}
\end{aligned}
$$

The radon transform $R\left(\theta, x^{\prime}\right)$ is used to reconstruct the 3D absorption image of the object numerically.

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the

$$
p(x)=\int f(x, y) d y
$$ x-axis

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the

$$
p(x)=\int f(x, y) d y
$$ x-axis

the Fourier transform of the projection is

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$?

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x=P\left(q_{x}\right)
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+i q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x=P\left(q_{x}\right)
\end{aligned}
$$

The Fourier transform of the projection is equal to a slice through the Fourier transform of the object at the origin in the direction of propagation

Fourier transform reconstruction

Sinograms

(c) Model $f(x, y)$

(e) Reconstructed $f(x, y)$

Medical tomography

Today's outline - April 16, 2020 (part B)

Today's outline - April 16, 2020 (part B)

- Fresnel zone plate review

Today's outline - April 16, 2020 (part B)

- Fresnel zone plate review
- Wavefield propagation

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including:

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors,

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses,

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and Fresnel zone plates

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

- have the smallest spot sizes

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

- have the smallest spot sizes
- can be used with a broad range of energies

Focusing optics

The primary requirement for all types of microscopy at a synchrotron is the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

- have the smallest spot sizes
- can be used with a broad range of energies
- can be used for both focusing and imaging

Fresnel zone plate review

The $m^{\text {th }}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{\text {th }}$ zone can be calculated

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{\text {th }}$ zone can be calculated
$f^{2}+r_{m}^{2}=\left(f+\frac{m \lambda}{2}\right)^{2}$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{\text {th }}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \lambda^{2}}{4}
\end{aligned}
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{\text {th }}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \not \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \not \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

$$
\Delta r_{M}=\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

$$
\Delta r_{M}=\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})=\sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M} \sqrt{1-\frac{1}{M}}\right)
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})=\sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M} \sqrt{1-\frac{1}{M}}\right) \\
& \approx \sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M}\left[1-\frac{1}{2 M}\right]\right)
\end{aligned}
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})=\sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M} \sqrt{1-\frac{1}{M}}\right) \\
& \approx \sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M}\left[1-\frac{1}{2 M}\right]\right) \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}
\end{aligned}
$$

Fresnel zone plate review

The $m^{t h}$ zone radiates x-rays that arrive at the focus with a phase shift of $m \pi=m \lambda / 2$ relative to the incident beam and the radius of the $m^{t h}$ zone can be calculated

$$
\begin{aligned}
f^{2}+r_{m}^{2} & =\left(f+\frac{m \lambda}{2}\right)^{2} \\
& =f^{2}+m \lambda f+\frac{m^{2} \chi^{2}}{4} \\
r_{m} & \approx \sqrt{m \lambda f}
\end{aligned}
$$

if r_{M} is the radius of the outermost zone, the width of
 this zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})=\sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M} \sqrt{1-\frac{1}{M}}\right) \\
& \approx \sqrt{\lambda f}\left(\sqrt{M}-\sqrt{M}\left[1-\frac{1}{2 M}\right]\right) \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \longrightarrow f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
\end{aligned}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
D=2 r_{M}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
D=2 r_{M}=2 \sqrt{M \lambda f}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}
\end{aligned}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

$$
\Delta x=1.22 \frac{\lambda f}{D}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

$$
\Delta x=1.22 \frac{\lambda f}{D}=1.22 \frac{\lambda f}{4 M \Delta r_{M}}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

$$
\Delta x=1.22 \frac{\lambda f}{D}=1.22 \frac{\lambda f}{4 M \Delta r_{M}}=1.22 \frac{\left(\Delta r_{M}\right)^{2}}{\Delta r_{M}}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

$$
\Delta x=1.22 \frac{\lambda f}{D}=1.22 \frac{\lambda f}{4 M \Delta r_{M}}=1.22 \frac{\left(\Delta r_{M}\right)^{2}}{\Delta r_{M}}=1.22 \Delta r_{M}
$$

Fresnel zone plate review

$$
r_{m} \approx \sqrt{m \lambda f}, \quad \Delta r_{M} \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}, \quad f \approx 4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
$$

The diameter of the zone plate is

$$
\begin{aligned}
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

using the Rayleigh criterion for resolvability

$$
\Delta x=1.22 \frac{\lambda f}{D}=1.22 \frac{\lambda f}{4 M \Delta r_{M}}=1.22 \frac{\left(\Delta r_{M}\right)^{2}}{\Delta r_{M}}=1.22 \Delta r_{M}
$$

The resolution of a zone plate is determined by the width of the outermost ring and fabrication considerations limit this to $\sim 20 \mathrm{~nm}$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

The Fourier transform is used to generate this propagation operator in the following way (showing only the x dependence for simplicity)

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

The Fourier transform is used to generate this propagation operator in the following way (showing only the x dependence for simplicity)

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\tilde{\psi}_{0} e^{-i k_{x} x} \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\tilde{\psi}_{0} e^{-i k_{x} x} \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\begin{aligned}
\tilde{\psi}_{0} e^{-i k_{x} x} & \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} \\
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]
\end{aligned}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}, \quad \tilde{\psi}_{0}\left(k_{x}\right)=\int \psi_{0}(x) e^{i k_{x} x} d x
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\begin{aligned}
\tilde{\psi}_{0} e^{-i k_{x} x} & \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} \\
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
\end{aligned}
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\psi_{z}(x)=\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x}
\end{aligned}
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \frac{1}{2 \pi} \int\left[\int \psi_{0}\left(k_{x}\right) e^{i k_{x} x} d x\right] e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x}
\end{aligned}
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \frac{1}{2 \pi} \int\left[\int \psi_{0}\left(k_{x}\right) e^{i k_{x} x} d x\right] e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i k_{x}^{2} z / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x)\right]\right]
\end{aligned}
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \frac{1}{2 \pi} \int\left[\int \psi_{0}\left(k_{x}\right) e^{i k_{x} x} d x\right] e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i k_{x}^{2} z / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x)\right]\right]
\end{aligned}
$$

and writing the complete solution in two dimensions

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \frac{1}{2 \pi} \int\left[\int \psi_{0}\left(k_{x}\right) e^{i k_{x} x} d x\right] e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i k_{x}^{2} z / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x)\right]\right]
\end{aligned}
$$

and writing the complete solution in two dimensions

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Wavefield propagation

The wavefield propagated along the \hat{z} direction from 0 to z is thus (still ignoring the \hat{y} direction)

$$
\begin{aligned}
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
& =\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{i k z} e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \frac{1}{2 \pi} \int\left[\int \psi_{0}\left(k_{x}\right) e^{i k_{x} x} d x\right] e^{-i k_{x}^{2} z / 2 k} e^{-i k_{x} x} d k_{x} \\
& =e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i k_{x}^{2} z / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x)\right]\right]
\end{aligned}
$$

and writing the complete solution in two dimensions

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]=\hat{D}_{z} \psi_{0}(x, y)
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\psi_{z}(x, y)=e^{i k z} P(x, y) * \psi_{0}(x, y)
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\begin{aligned}
\psi_{z}(x, y) & =e^{i k z} P(x, y) * \psi_{0}(x, y) \\
P(x, y) & =\frac{1}{(2 \pi)^{2}} \iint e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d x d y
\end{aligned}
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\begin{aligned}
\psi_{z}(x, y) & =e^{i k z} P(x, y) * \psi_{0}(x, y) \\
P(x, y) & =\frac{1}{(2 \pi)^{2}} \iint e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d x d y=-i \frac{k}{2 \pi z} e^{-i k\left(x^{2}+y^{2}\right) / 2 z}
\end{aligned}
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\begin{aligned}
\psi_{z}(x, y) & =e^{i k z} P(x, y) * \psi_{0}(x, y) \\
P(x, y) & =\frac{1}{(2 \pi)^{2}} \iint e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d x d y=-i \frac{k}{2 \pi z} e^{-i k\left(x^{2}+y^{2}\right) / 2 z} \\
\psi_{z}(x, y) & =-i \frac{k e e^{i k z}}{2 \pi z}\left[e^{-i k\left(x^{2}+y^{2}\right) / 2 z}\right] * \psi_{0}(x, y)
\end{aligned}
$$

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\begin{aligned}
\psi_{z}(x, y) & =e^{i k z} P(x, y) * \psi_{0}(x, y) \\
P(x, y) & =\frac{1}{(2 \pi)^{2}} \iint e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d x d y=-i \frac{k}{2 \pi z} e^{-i k\left(x^{2}+y^{2}\right) / 2 z} \\
\psi_{z}(x, y) & =-i \frac{k e^{i k z}}{2 \pi z}\left[e^{-i k\left(x^{2}+y^{2}\right) / 2 z}\right] * \psi_{0}(x, y)
\end{aligned}
$$

This convolution can be easily evaluated numerically if the initial wavefield at the optic is known

Wavefield propagation

$$
\psi_{z}(x, y)=e^{i k z} \mathcal{F}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
$$

Since the final inverse Fourier Transform is taken on the product of two functions in k-space, the convolution theorem states that the result is the convolution of the Fourier Transform of the two functions

$$
\begin{aligned}
\psi_{z}(x, y) & =e^{i k z} P(x, y) * \psi_{0}(x, y) \\
P(x, y) & =\frac{1}{(2 \pi)^{2}} \iint e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d x d y=-i \frac{k}{2 \pi z} e^{-i k\left(x^{2}+y^{2}\right) / 2 z} \\
\psi_{z}(x, y) & =-i \frac{k e^{i k z}}{2 \pi z}\left[e^{-i k\left(x^{2}+y^{2}\right) / 2 z}\right] * \psi_{0}(x, y)
\end{aligned}
$$

This convolution can be easily evaluated numerically if the initial wavefield at the optic is known

One example is the comparison between a phase Fresnel zone plate and an absorption Fresnel zone plate

Fresnel zone plates

Fresnel Zone Phase Plate

Wave Propagation

Amplitude profile

Fresnel zone plates

Fresnel Zone Phase Plate

Wave Propagation

Amplitude profile

Fresnel Zone Absorption Plate

Wave Propagation

Amplitude profile

