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Phase difference in scattering

All imaging can be broken into a
three step process
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Phase difference in scattering

[
All imaging can be broken into a The scattered waves from O and P
three step process will travel different distances
1. x-ray interaction with sample In the far field, the phase difference
2. scattered x-ray propagation is ¢~ Q-7 with Q=K —k
3. interaction with detector Since k L 7, o~ Q- 7=k -7

The path length difference corresponding to this phase shift is k'-r=0OF
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Franuhofer, Fresnel, and contact regimes

=~y v

The path length difference computed with the far field approximation has
a built in error of A = FF’ which sets a scale for different kinds of imaging
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Franuhofer, Fresnel, and contact regimes

=~y v

The path length difference computed with the far field approximation has

a built in error of A = FF’ which sets a scale for different kinds of imaging
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Detector placement

If A\ =1 A and the distance to be resolved is a=1 A, then a>°/A =1 A
and any detector placement is in the Fraunhofer (far field) regime
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Detector placement

If A\ =1 A and the distance to be resolved is a=1 A, then a>°/A =1 A
and any detector placement is in the Fraunhofer (far field) regime

if 2= 1um, then a?/\ = 10 mm and the imaging regime can be selected
by detector placement

if a=1 mm, then a?/\ = 10 km and the detector will always be in the

contact regime
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Contact to far-field imaging

ideal absorption object

ideal phase object d ks
Sample
Detector
0.1 mm
1 mm
Contact  \oor Field 100'mm 1000 mm
Towards
Far Field
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Radiography to tomography

Radiography started immedi-
ately after the discovery of
x-rays in 1895.
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aged has a non uniform ab-
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The line integral of the ab-
sorption coefficient at a par-
ticular value of x' is mea-
sured as the ratio of the
transmitted to the incident
beam
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n

The radon transform R(6, x) is used to reconstruct the 3D absorption
image of the object numerically.
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Fourier slice theorem

Start with a general function

f(x,y) which is projected onto the
X-axis
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Fourier slice theorem

Start with a general function
f(x,y) which is projected onto the
X-axis

p(x) = / f(x, y)dy

the Fourier transform of the projec-
tion is

P(ax) :/p(X)e’qudX
What is the relationship of the Fourier transform, P(qy), to the original

function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy)Z//f(xm)e""*”""yydxdy

F(gx g, = 0) = / [ / F(x, y)dy] ey — / p(x)e™*dx = P(qy)

The Fourier transform of the projection is equal to a slice through the

Fourier transform of the object at the origin in the direction of propagation
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Fourier transform reconstruction
P(q,)

p(x) ﬁ;nsf;rm ’_\

T

o

Jtx.y)
: Y .
F(ax, ay) = sin(gxx) sin(qyy) P(qgy) = sin(gxx)

qxX ayy qxX
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Sinograms
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Medical tomography

detector
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rotation <

Position
collimator
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"""" P rotation

X-ray
tube source
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® Fresnel zone plate review
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Focusing optics

The primary requirement for all types of microscopy at a synchrotron is
the ability to focus the x-ray beam to a desired size
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Focusing optics

The primary requirement for all types of microscopy at a synchrotron is
the ability to focus the x-ray beam to a desired size

As discussed at the beginning of the semester, this can be done in multiple

ways including: Kirkpatrick-Baez mirrors, compound refractive lenses, and
Fresnel zone plates

Fresnel zone plates are most commonly used for microscopy because they

® have the smallest spot sizes
® can be used with a broad range of energies

® can be used for both focusing and imaging
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Fresnel zone plate review

The mt" zone radiates x-rays that arrive at the focus with a phase shift of
mm = m\/2 relative to the incident beam
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M

NJ@ﬁ f{p-}> ;ﬁ—>hAMmT)
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Fresnel zone plate review
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Fresnel zone plate review
fm &= VMAf,

The diameter of the zone
plate is

D =2ry = 2V MXf
= 2VMVAFf = 4MAry

using the Rayleigh criterion
for resolvability
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for resolvability
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using the Rayleigh criterion
for resolvability
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Fresnel zone plate review

rm & VmAf,
The diameter of the zone
plate is
D =2y =2V MAf

= 2VMVAFf = 4MAry

using the Rayleigh criterion
for resolvability

A A (Ary)?
Ax =1.222 =122 —1.22 =
X D AMAry NGy

The resolution of a zone plate is determined by the width of the outermost
ring and fabrication considerations limit this to ~ 20 nm
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Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system
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In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system

start with a monochromatic plane wave propagating in the z direction,
described by the function e’*? with wavelength \ = 27/k

when the wavefront passes through an optical element or a sample, it is
distorted such that the wavefield at z = 0 is now a function of the
transverse dimensions, x and y: v¢o(x,y)

our goal is to determine the wavefield at a distance z downstream and this
is done by constructing a propagation operator D, such that

wz = Dsz(XJ/)

The Fourier transform is used to generate this propagation operator in the
following way (showing only the x dependence for simplicity)

Yo(x) = % / Do(ky)e " dk,
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Wavefield propagation
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Wavefield propagation

¢0(X) = ;]T/@ZO(kx)e_ikxxdkxa QZ)O(kx) = /Tflo(x)eikxxdx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector k = kX + k,2
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Wavefield propagation

1 - . - )
o) = 5o [ Falk)e ™, To(ks) = [ vnlx)e™dx
in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector k = kX + k,2

We can rewrite the relationships as follows but if kx < k we have

k2
ky = \/k? — k2~ k- =
z x 2k

each of the plane waves {ge % propagates to z by multiplication with a
phase factor

~ . - . . ~ . . .o .
woe—/kxx N ¢06_’kxxe’kzz _ 77/}0e—lkxxelkze—/kxz/2k _ wz(kx)e_lkxx
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in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector k = kX + k,2

We can rewrite the relationships as follows but if kx < k we have
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phase factor
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

1

V2(x) = FT (k)] = > /,l/jz(kx)eikxxdkx

1 ~ . . .
— 7 / 7/}0(kx)elkze—lkfz/ﬂ(e—lkxxa:kx
s
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

~ 1 ~ .
vel) = FT D] = o [ ) e
_ i 7 ikz \—ik2z/2k —ikyx
— 5 [ Dolk)eiee ke

1 . . .
_ eIkZ? |:/ wo(kx)e’kxxdx] ef/kfz/2kef/kxxdkx
T
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

—1r.7 1 7 — ik x
vel) = FT D] = o [ ) e
_ i 7 ikz \—ik2z/2k —ikyx
= 27T/v,bo(kx)e e e "X dk,
_ eikz2i [/ wo(kx)eikxxdx] efikfz/2kefikxxdkx
T

— eikZJ_-T—l [e—ikxzz/2kf~7~ [wO(X)]:|
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

=117 1 7 — ik x
vel) = FT D] = o [ ) e
— 2i /17;0(kX)eikze—ikfz/Zke—ikXxde
T
_ eikz2i [/ wo(kx)eikxxdx] efikfz/2kefikxxdkx
T
_ eke -1 [e—ikfz/2k]_-7— [
= o(x)]

and writing the complete solution in two dimensions
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

vel) = FT D] = o [ ) e
_ % /12)0(kx)eikze—ikfz/zke—ikxxdkx
_ eikz% [/ wo(kx)eikxxdx] o ik32/2Kk gikx i
_ ek 1 [e—ikfz/2k]_—7— [¢0(X)]:|
and writing the complete solution in two dimensions

Ua(x,y) = ¥ FT [ =2k F T x, )]
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Wavefield propagation

The wavefield propagated along the Z direction from 0 to z is thus (still
ignoring the y direction)

vel) = FT D] = o [ ) e
_ % /12)0(kx)eikze—ikfz/zke—ikxxdkx
_ eikz% [/ wo(kx)eikxxdx] o ik32/2Kk gikx i
_ ek 1 [e—ikfz/2k]_—7— [¢0(X)]:|
and writing the complete solution in two dimensions

N

belx,y) = € FT7H [ HEHD/2 F T (x, )] | = Davio(x,y)

C. Segre (IIT) PHYS 570 - Spring 2020 April 16, 2020

18 /20



Wavefield propagation

Ua(x,y) = ¥ FTH [ =2k F T x, )]
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Wavefield propagation
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Since the final inverse Fourier Transform is taken on the product of two

functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions
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Wavefield propagation
Ua(x,y) = ¥ FTH [ =2k F T x, )]

Since the final inverse Fourier Transform is taken on the product of two
functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions

¢z(X7Y) = eikZP(X7.y) * 1/10(X7Y)

]. i 2 2 k H 2 2
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Wavefield propagation
Ua(x,y) = ¥ FTH [ =2k F T x, )]

Since the final inverse Fourier Transform is taken on the product of two
functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions

ba(x,y) = €*P(x,y) * 1ho(x,y)
1 22 k ik(x2 42
p _ —iz(k2+K2)/2k — _; " a—ik(x*+y?)/2z
(x,y) (2n) //e v/ <% dxdy is—e
keikz

2nz

Pa(x,y) = —i [e*"k(%*y 3/ 22} 1o(x, y)
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Wavefield propagation
Ua(x,y) = ¥ FTH [ =2k F T x, )]

Since the final inverse Fourier Transform is taken on the product of two
functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions

¢z(X’Y) = eikZP(X7y) * 1/10(X7Y)

1 12 2 k (22

_ —iz(kg+k3)/2k _ ;" —ik(x*+y*)/2z

P(x,y) (2n) //e v/ <% dxdy is—e
-keikz —ik(x z

wz(X,)/) =I5 [e K 2+y2)/2 i| * ¢0(X7)/)

2nz

This convolution can be easily evaluated numerically if the initial wavefield
at the optic is known
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Wavefield propagation
Ua(x,y) = ¥ FTH [ =2k F T x, )]

Since the final inverse Fourier Transform is taken on the product of two
functions in k-space, the convolution theorem states that the result is the
convolution of the Fourier Transform of the two functions

¢z(X’Y) = eikZP(X7y) * 1/10(X7Y)

1 12 2 k (22

_ —iz(kg+k3)/2k _ ;" —ik(x*+y*)/2z

P(x,y) (2n) //e v/ <% dxdy is—e
. keikz 7ik(x2+y2)/22

wZ(X)y):_Ii [e i| *¢0(X7)/)

2nz

This convolution can be easily evaluated numerically if the initial wavefield
at the optic is known

One example is the comparison between a phase Fresnel zone plate and an
absorption Fresnel zone plate
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Fresnel zone plates

Fresnel Zone Phase Plate

Wave Propagation
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Fresnel zone plates

Fresnel Zone Phase Plate Fresnel Zone Absorption Plate

Wave Propagation ‘Wave Propagation
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