
Today’s outline - April 09, 2020 (part A)

• Index of refraction

• Kramers-Kronig relations

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 1 / 27



Today’s outline - April 09, 2020 (part A)

• Index of refraction

• Kramers-Kronig relations

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 1 / 27



Today’s outline - April 09, 2020 (part A)

• Index of refraction

• Kramers-Kronig relations

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 1 / 27



Today’s outline - April 09, 2020 (part A)

• Index of refraction

• Kramers-Kronig relations

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 1 / 27



Today’s outline - April 09, 2020 (part A)

• Index of refraction

• Kramers-Kronig relations

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment #07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 1 / 27



Resonant scattering from a single electron

Electrons in atoms are not “free” and give rise to the resonant scattering
terms, f ′ and f ′′

By treating an electron as a
damped harmonic oscillator
with a resonant frequency ωs

and a damping term −Γmv
that is driven by the exter-
nal electric field E0e

−iωt , the
resonant corrections to the
scattering factor become:

f ′s =
ω2
s (ω2 + ω2

s )

(ω2 − ω2
s )2 + (ωΓ)2

f ′′s = − ω2
sωΓ

(ω2 − ω2
s )2 + (ωΓ)2
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Refractive index

Scattering and refraction are alternative ways to approach the phenomenon
of x-ray interaction with matter.

Thus the resonant response we have seen
in scattering must be manifested in the index of refraction as well.

the electric field from the x-
rays, ~E (t), induces a polar-
ization response, ~P(t), in the
material, where
χ = (ε/ε0 − 1)
is the electric susceptibility

given an electron density ρ
and using the displacement
function for the electrons in
the forced oscillator model

index of refraction can thus
be computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ
(
− e

m

) E0e
−iωt

(ω2
s − ω2 − iωΓ)

P(t)

E (t)
= ε− ε0 =

(
e2ρ

m

)
1

(ω2
s − ω2 − iωΓ)

n2 =
c2

v2
=

ε

ε0
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Refractive index

n2 = 1 +

(
e2ρ

ε0m

)
1

(ω2
s − ω2 − iωΓ)

(ω2
s − ω2 + iωΓ)

(ω2
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= 1 +

(
e2ρ

ε0m

)
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Absorption cross-section

Electrons in atoms are bound and
therefore have resonant effects due
to the binding forces

the imaginary part of the resonant
scattering for an electron bound to
an atom shows a frequency depen-
dence with a peak at ω ≈ ωs

this single oscillator model, how-
ever, does not reproduce the
observed absorption cross-section
jump at an absorption edge

f ′′s (ω) =
ω2
sωΓ

(ω2 − ω2
s )2 + (ωΓ)2

r20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

σ
a

,s

ω/ωs

σa,s(ω) = 4πr0c
ω2
s Γ

(ω2 − ω2
s )2 + (ωΓ)2
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Multi-oscillator model

The damping constant, Γ is gen-
erally much less than the resonant
frequency, ωs

thus the single oscillator is essen-
tially a delta function

in a real atom, exceeding the ab-
sorption edge allows the electron
to be excited into a continuum of
states which can be approximated
by a sum of resonant oscillators
with frequency distribution g(ωs)

σa(ω) = 2π2r0c
∑
s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-
nant scattering term f ′(ω)

σa,s(ω) = 4πr0c
ω2
s Γ

(ω2 − ω2
s )2 + (ωΓ)2

≈4πr0c
π

2
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Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the
dispersion corrections.

However, if it is possible to obtain the experimental
absorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from the
measured absorption cross-
section

f ′′(ω) = −
(

ω

4πr0c

)
σa(ω)

then use the Kramers-Kronig relations which connect the resonant term to
the absorptive term

f ′(ω) =
1

π
P
∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)
dω′

f ′′(ω) = − 1

π
P
∫ +∞

−∞

f ′(ω′)

(ω′ − ω)
dω′

where the P indicates a “principal
value” integral computed by inte-
grating from −∞ to (ω − ε) and
from (ω+ε) to +∞ and then send-
ing ε→ 0

The Kramers-Kronig relations are derived using Cauchy’s theorem to
integrate a function with a pole
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More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and
bottom by (ω′ + ω)

and noting that f ′′ is odd and f ′ is even

f ′(ω) =
1

π
P
∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)
dω′

=
1

π
P
∫ +∞
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f ′′(ω′)

(ω′ − ω)

(ω′ + ω)

(ω′ + ω)
dω′

=
1

π
P
∫ +∞

−∞

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ +

������������
ω

π
P
∫ +∞

−∞

f ′′(ω′)

(ω′2 − ω2)
dω′

=
2

π
P
∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′

f ′′(ω) = − 1

π
P
∫ +∞
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f ′(ω′)
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π
P
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ω′f ′(ω′)

(ω′2 − ω2)
dω′ − ω

π
P
∫ +∞

−∞

f ′(ω′)

(ω′2 − ω2)
dω′

= −2ω

π
P
∫ +∞

0

f ′(ω′)

(ω′2 − ω2)
dω′
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Computing f ′

Starting with the Kramers-Kronig relation for f ′

and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′

= − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

Starting with the Kramers-Kronig relation for f ′ and recalling that f ′′ is
directly related to the absorption cross-section, σa

f ′(ω) =
2

π
P
∫ ∞
0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′ = − 2

π

1

4πr0c
P
∫ ∞
0

ω′2σa(ω′)

(ω′2 − ω2)
dω′

if ωK is the frequency of the K ab-
sorption edge and a substitution is
made with x = ω′/ωK and xK =
ω/ωK , f ′ becomes

assuming that σa is zero below ωK

and varies as ω′−3 above we have

σa(x) =

{
0 x ≤ 1

σa(1)x−3 x ≥ 1

f ′(ω) = − 2ωK

4πr0c
P
∫ ∞
0

x2σa(x)

(x2 − x2K )
dx

= − 2ωK

4πr0c
P
∫ ∞
1

σa(1)

x(x2 − x2K )
dx

this can be evaluated for two 1s
electrons

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 9 / 27



Computing f ′

f ′(ω) = −2ωKσa(1)

4πr0c
P
∫ ∞
1

1

x(x2 − x2K )
dx , xK =

ω

ωK

For 2 1s electrons and doing the
integral gives

σa(1) = 2

(
256π

3e4

)
λK r0

f ′(ω) =
3.13

2x2K
Re
{
ln(1− z2)

}
where z = xK +iη includes the core
hole broadening parameter, η -8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

η=0

η=0.005

η=0.02

f’

xK

at high energies (xK →∞) this dispersion correction vanishes as expected
and at low energies (xK , q → 0) the correction is −1.565, thereby partially
quenching the scattering from the two 1s electrons
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Self-consistent cross-section calculations

More accurate calculations of the
resonant corrections to the scatter-
ing factor can be made using a full
quantum mechanical treatment

The simple model, however, repro-
duces the main features of the Ar
K-edge

Even for Kr, the K-edge resonance
is similar to the simple calculation

What is lacking, even in the
more sophisticated calcuations, are
the resonances near the absorption
edges due to XANES, EXAFS and
other localized resonance phenom-
ena
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Today’s outline - April 09, 2020 (part B)

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs
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Scattering from two unlike atoms

k

k

Qx>0

k

k

Qx<0

Two unlike atoms with scatter-
ing factors f1 and f2 are oriented
by a vector pointing from the
larger to the smaller.

Consider two cases, with the
scattering vector Q in the same
direction as the orientation vec-
tor and opposite to the orienta-
tion vector.

Now compute the scattered in-
tensity in each case, assuming
scattering factors are purely real.
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Friedel’s Law

k

k

Qx>0

A(+Q) = f1 + f2e
+iQx

I (+Q) = (f1 + f2e
+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e
−iQx

I (−Q) = (f1 + f2e
−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

k

k

Qx<0
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Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j

= rje
iφj

j = 1, 2 rj = |fj |
A(+Q) = r1e

iφ1 + r2e
iφ2e iQx A(−Q) = r1e

iφ1 + r2e
iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j

= rje
iφj

j = 1, 2

rj = |fj |
A(+Q) = r1e

iφ1 + r2e
iφ2e iQx A(−Q) = r1e

iφ1 + r2e
iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx

A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx

A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx

A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx

A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−i(Qx−φ1+φ2) + e+i(Qx−φ1+φ2))

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx

A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + r1r2(e+i(Qx+φ1−φ2) + e−i(Qx+φ1−φ2))

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2)

and the two intensities are no longer equal, breaking Friedel’s Law

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j = rje
iφj j = 1, 2 rj = |fj |

A(+Q) = r1e
iφ1 + r2e

iφ2e iQx A(−Q) = r1e
iφ1 + r2e

iφ2e−iQx

I (+Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx − φ1 + φ2)

I (−Q) = (r1e
iφ1 + r2e

iφ2e−iQx)(r1e
−iφ1 + r2e

−iφ2e iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e iQx + r1r2e

−iφ1e iφ2e−iQx

= |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2)

and the two intensities are no longer equal, breaking Friedel’s Law
C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 16 / 27



Friedel’s Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by
measuring both I (Q) and I (−Q)

However, if there is a center of symmetry in the arrangement of the atoms,
Friedel’s Law still holds

suppose we have atoms of type 1 at ±x1
and atoms of type 2 at ±x2
the scattering factor is now -x

2
+x

2
-x

1
+x

10

F = r1e
−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e
−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 cos2(Qx1) + 4|f2|2 cos2(Qx2)

+ 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1) = I (−Q)
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Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

Re{f}

Im{f}

f0 f’

f’’

build the scattering vector from real and
imaginary components with the imaginary
part always π/2 clockwise compared to
the real part

ignore the resonant terms for the first
atom which has a phase angle φ1

the scattering factors have the same
length

add in a second atom with resonant terms
and a phase factor φ2 due to its relative
position in the unit cell

the scattering vectors now have different
magnitudes and phases
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ZnS example

The ZnS structure is not cen-
trosymmetric and when viewed
along the 〈111〉 direction, it shows
alternating stacked planes of Zn
and S atoms.

Scattering from opposite faces of a
single crystal of ZnS gives a dif-
ferent scattering factor and one
can deduce the terminating surface
atom.
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Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at
each corner, oriented so the lightest is projected to the origin.

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 20 / 27



Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at
each corner, oriented so the lightest is projected to the origin.

C. Segre (IIT) PHYS 570 - Spring 2020 April 09, 2020 20 / 27



Atomic scattering factors

Each of the three atoms not at the origin has a scattering factor for ~Q as
shown
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Left handed scattering factor

FS = |fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ
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Right handed scattering factor

FR = |fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ
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Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule
simply by x-ray scattering

s

∣∣∣|fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ
∣∣∣2 6= ∣∣∣|fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

∣∣∣2
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Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion phasing is a technique commonly
used in protein crystallography to help solve the “phase problem”

Atoms with an absorption edge in the energy range being scanned have a
scattering factor

FA = f 0A + f ′A + i f ′′A
while all the other atoms in the
molecule have a total scattering factor
FR = f 0R with no resonant terms

At energies far away from the absorp-
tion edge, the scattering factors of the
anomalous atoms with angle φA and
the rest of the molecule with angle φR
add vectorially in an Argand diagram
to give the molecule scattering factor
Fmol with phase angle φmol

φmol

f
0

A

Im{F}

Re{F}

Fmol

FR

ω> ωK>
ω< ωK<
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tion edge, the scattering factors of the
anomalous atoms with angle φA and
the rest of the molecule with angle φR
add vectorially in an Argand diagram
to give the molecule scattering factor
Fmol with phase angle φmol
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As the x-ray energy approaches the
absorption edge, a resonant term f ′A
grows with opposite sign from f 0A but
there is no dissipative term

At the absorption edge, a large dissi-
pative term, f ′′A , appears with a π/2
phase shift compared to f ′A

Once past the absorption edge both
f ′A and f ′′A shrink eventually returning
to zero at high energies

The change in the scattering factor
of each Bragg reflection can be used
to locate the position of the resonant
atoms in the structure
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