Today's outline - April 09, 2020 (part A)

Today's outline - April 09, 2020 (part A)

- Index of refraction

Today's outline - April 09, 2020 (part A)

- Index of refraction
- Kramers-Kronig relations

Today's outline - April 09, 2020 (part A)

- Index of refraction
- Kramers-Kronig relations

Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Today's outline - April 09, 2020 (part A)

- Index of refraction
- Kramers-Kronig relations

Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment \#07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

Resonant scattering from a single electron

Electrons in atoms are not "free" and give rise to the resonant scattering terms, f^{\prime} and $f^{\prime \prime}$

Resonant scattering from a single electron

Electrons in atoms are not "free" and give rise to the resonant scattering terms, f^{\prime} and $f^{\prime \prime}$

By treating an electron as a damped harmonic oscillator with a resonant frequency ω_{s} and a damping term $-\Gamma m v$ that is driven by the external electric field $E_{0} e^{-i \omega t}$, the resonant corrections to the scattering factor become:

Resonant scattering from a single electron

Electrons in atoms are not "free" and give rise to the resonant scattering terms, f^{\prime} and $f^{\prime \prime}$

By treating an electron as a damped harmonic oscillator with a resonant frequency ω_{s} and a damping term $-\Gamma m v$ that is driven by the external electric field $E_{0} e^{-i \omega t}$, the resonant corrections to the scattering factor become:

$$
\begin{aligned}
f_{s}^{\prime} & =\frac{\omega_{s}^{2}\left(\omega^{2}+\omega_{s}^{2}\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
f_{s}^{\prime \prime} & =-\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter.

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$ the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement function for the electrons in the forced oscillator model
index of refraction can thus

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

$$
n^{2}=\frac{c^{2}}{v^{2}}
$$

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement function for the electrons in the forced oscillator model index of refraction can thus

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

$$
n^{2}=\frac{c^{2}}{v^{2}}=\frac{\epsilon}{\epsilon_{0}}
$$ be computed

Refractive index

$$
n^{2}=1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

Refractive index

$$
n^{2}=1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)} \frac{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)}{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)}
$$

Refractive index

$$
\begin{aligned}
n^{2} & =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)} \frac{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)}{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)} \\
& =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{\omega_{s}^{2}-\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Refractive index

$$
\begin{aligned}
n^{2} & =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)} \frac{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)}{\left(\omega_{s}^{2}-\omega^{2}+i \omega \Gamma\right)} \\
& =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{\omega_{s}^{2}-\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}+i\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{\omega \Gamma}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{\text {s }}$

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{\text {s }}$
this single oscillator model, however, does not reproduce the observed absorption cross-section jump at an absorption edge

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{\text {s }}$
this single oscillator model, however, does not reproduce the observed absorption cross-section jump at an absorption edge

$$
f_{s}^{\prime \prime}(\omega)=\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
$$

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, Γ is generally much less than the resonant frequency, ω_{s}

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, 「 is generally much less than the resonant frequency, ω_{s}

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

thus the single oscillator is essentially a delta function

Multi-oscillator model

The damping constant, 「 is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essen-

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$ tially a delta function

Multi-oscillator model

The damping constant, 「 is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essen-

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$ tially a delta function

in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$

Multi-oscillator model

The damping constant, Γ is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essen-

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$ tially a delta function

in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$

Multi-oscillator model

The damping constant, 「 is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function
in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$

$$
\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)
$$

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} \subset \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$

Multi-oscillator model

The damping constant, 「 is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function
in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$
a similar effect is seen in the resonant scattering term $f^{\prime}(\omega)$

Multi-oscillator model

The damping constant, Γ is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function
in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$
a similar effect is seen in the resonant scattering term $f^{\prime}(\omega)$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections.

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
f^{\prime}(\omega)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

where the \mathcal{P} indicates a "principal value" integral computed by integrating from $-\infty$ to ($\omega-\epsilon$) and from $(\omega+\epsilon)$ to $+\infty$ and then sending $\epsilon \rightarrow 0$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed. first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{array}{ll}
f^{\prime}(\omega)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime} & \begin{array}{l}
\text { where the } \mathcal{P} \text { indicates a "principal } \\
\text { value" integral computed by inte- } \\
\text { grating from }-\infty \text { to }(\omega-\epsilon) \text { and } \\
f^{\prime \prime}(\omega)
\end{array}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime} \\
\begin{array}{l}
\text { from }(\omega+\epsilon) \text { to }+\infty \text { and then send- } \\
\text { ing } \epsilon \rightarrow 0
\end{array}
\end{array}
$$

The Kramers-Kronig relations are derived using Cauchy's theorem to integrate a function with a pole

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$

$$
f^{\prime}(\omega)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
$$

$$
f^{\prime \prime}(\omega)=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$

$$
f^{\prime}(\omega)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime}
$$

$$
f^{\prime \prime}(\omega)=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}-\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd and f^{\prime} is even

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}-\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

More about Kramers-Kronig

The Kramers-Kronig relations can be rewritten by multiplying top and bottom by $\left(\omega^{\prime}+\omega\right)$ and noting that $f^{\prime \prime}$ is odd and f^{\prime} is even

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}+\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} \frac{\left(\omega^{\prime}+\omega\right)}{\left(\omega^{\prime}+\omega\right)} d \omega^{\prime} \\
& =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{\omega^{\prime} f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}-\frac{\omega}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
& =-\frac{2 \omega}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the $K a b-$ sorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$ $\omega / \omega_{K}, f^{\prime}$ becomes

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the K absorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{x^{2} \sigma_{a}(x)}{\left(x^{2}-x_{K}^{2}\right)} d x
$$ $\omega / \omega_{K}, f^{\prime}$ becomes

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the K absorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{x^{2} \sigma_{a}(x)}{\left(x^{2}-x_{K}^{2}\right)} d x
$$ $\omega / \omega_{K}, f^{\prime}$ becomes

assuming that σ_{a} is zero below ω_{K} and varies as $\omega^{\prime-3}$ above we have

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the K absorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{x^{2} \sigma_{a}(x)}{\left(x^{2}-x_{K}^{2}\right)} d x
$$ $\omega / \omega_{K}, f^{\prime}$ becomes

assuming that σ_{a} is zero below ω_{K} and varies as $\omega^{\prime-3}$ above we have

$$
\sigma_{a}(x)= \begin{cases}0 & x \leq 1 \\ \sigma_{a}(1) x^{-3} & x \geq 1\end{cases}
$$

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the K absorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$

$$
\begin{aligned}
f^{\prime}(\omega) & =-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{x^{2} \sigma_{a}(x)}{\left(x^{2}-x_{K}^{2}\right)} d x \\
& =-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{\sigma_{a}(1)}{x\left(x^{2}-x_{K}^{2}\right)} d x
\end{aligned}
$$ $\omega / \omega_{K}, f^{\prime}$ becomes assuming that σ_{a} is zero below ω_{K} and varies as $\omega^{\prime-3}$ above we have

$$
\sigma_{a}(x)= \begin{cases}0 & x \leq 1 \\ \sigma_{a}(1) x^{-3} & x \geq 1\end{cases}
$$

Computing f^{\prime}

Starting with the Kramers-Kronig relation for f^{\prime} and recalling that $f^{\prime \prime}$ is directly related to the absorption cross-section, σ_{a}

$$
f^{\prime}(\omega)=\frac{2}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}=-\frac{2}{\pi} \frac{1}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{\omega^{\prime 2} \sigma_{a}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
$$

if ω_{K} is the frequency of the K absorption edge and a substitution is made with $x=\omega^{\prime} / \omega_{K}$ and $x_{K}=$ $\omega / \omega_{K}, f^{\prime}$ becomes assuming that σ_{a} is zero below ω_{K} and varies as $\omega^{\prime-3}$ above we have

$$
\begin{aligned}
f^{\prime}(\omega) & =-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{0}^{\infty} \frac{x^{2} \sigma_{a}(x)}{\left(x^{2}-x_{K}^{2}\right)} d x \\
& =-\frac{2 \omega_{K}}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{\sigma_{a}(1)}{x\left(x^{2}-x_{K}^{2}\right)} d x
\end{aligned}
$$

$$
\sigma_{a}(x)= \begin{cases}0 & x \leq 1 \\ \sigma_{a}(1) x^{-3} & x \geq 1\end{cases}
$$

this can be evaluated for two $1 s$ electrons

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons

$$
\sigma_{a}(1)=2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0}
$$

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons and doing the integral gives

$$
\sigma_{a}(1)=2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0}
$$

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons and doing the integral gives

$$
\begin{aligned}
\sigma_{a}(1) & =2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0} \\
f^{\prime}(\omega) & =\frac{3.13}{2 x_{K}^{2}} \operatorname{Re}\left\{\ln \left(1-z^{2}\right)\right\}
\end{aligned}
$$

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons and doing the integral gives

$$
\begin{aligned}
\sigma_{a}(1) & =2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0} \\
f^{\prime}(\omega) & =\frac{3.13}{2 x_{K}^{2}} \operatorname{Re}\left\{\ln \left(1-z^{2}\right)\right\}
\end{aligned}
$$

where $z=x_{K}+i \eta$ includes the core hole broadening parameter, η

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons and doing the integral gives

$$
\begin{aligned}
\sigma_{a}(1) & =2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0} \\
f^{\prime}(\omega) & =\frac{3.13}{2 x_{K}^{2}} \operatorname{Re}\left\{\ln \left(1-z^{2}\right)\right\}
\end{aligned}
$$

where $z=x_{K}+i \eta$ includes the core hole broadening parameter, η

Computing f^{\prime}

$$
f^{\prime}(\omega)=-\frac{2 \omega_{K} \sigma_{a}(1)}{4 \pi r_{0} c} \mathcal{P} \int_{1}^{\infty} \frac{1}{x\left(x^{2}-x_{K}^{2}\right)} d x, \quad x_{K}=\frac{\omega}{\omega_{K}}
$$

For $21 s$ electrons and doing the integral gives

$$
\begin{aligned}
\sigma_{a}(1) & =2\left(\frac{256 \pi}{3 e^{4}}\right) \lambda_{K} r_{0} \\
f^{\prime}(\omega) & =\frac{3.13}{2 x_{K}^{2}} \operatorname{Re}\left\{\ln \left(1-z^{2}\right)\right\}
\end{aligned}
$$

where $z=x_{K}+i \eta$ includes the core hole broadening parameter, η

at high energies $\left(x_{K} \rightarrow \infty\right)$ this dispersion correction vanishes as expected and at low energies $\left(x_{K}, q \rightarrow 0\right)$ the correction is -1.565 , thereby partially quenching the scattering from the two $1 s$ electrons

Self-consistent cross-section calculations

More accurate calculations of the resonant corrections to the scattering factor can be made using a full quantum mechanical treatment

Self-consistent cross-section calculations

More accurate calculations of the resonant corrections to the scattering factor can be made using a full quantum mechanical treatment

The simple model, however, reproduces the main features of the Ar K-edge

Self-consistent cross-section calculations

More accurate calculations of the resonant corrections to the scattering factor can be made using a full quantum mechanical treatment

The simple model, however, reproduces the main features of the Ar K-edge

Even for Kr , the K-edge resonance is similar to the simple calculation

Self-consistent cross-section calculations

More accurate calculations of the resonant corrections to the scattering factor can be made using a full quantum mechanical treatment

The simple model, however, reproduces the main features of the Ar K-edge

Even for Kr , the K-edge resonance is similar to the simple calculation

What is lacking, even in the more sophisticated calcuations, are the resonances near the absorption edges due to XANES, EXAFS and other localized resonance phenomena

Today's outline - April 09, 2020 (part B)

Today's outline - April 09, 2020 (part B)

- Friedel's Law

Today's outline - April 09, 2020 (part B)

- Friedel's Law
- Bijvoet (Bay-voot) Pairs

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector

Scattering from two unlike atoms

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector and opposite to the orientation vector.

Now compute the scattered intensity in each case, assuming scattering factors are purely real.

Friedel's Law

Friedel's Law

$$
\begin{aligned}
A(-Q) & =f_{1}+f_{2} e^{-i Q x} \\
I(-Q) & =\left(f_{1}+f_{2} e^{-i Q x}\right)\left(f_{1}+f_{2} e^{+i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x)
\end{aligned}
$$

Friedel's Law

$$
\begin{aligned}
A(-Q) & =f_{1}+f_{2} e^{-i Q x} \\
I(-Q) & =\left(f_{1}+f_{2} e^{-i Q x}\right)\left(f_{1}+f_{2} e^{+i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x)
\end{aligned}
$$

Qx<0

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
f_{j}=f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime} \quad j=1,2
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
f_{j}=f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right|
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-i\left(Q x-\phi_{1}+\phi_{2}\right)}+e^{+i\left(Q x-\phi_{1}+\phi_{2}\right)}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
I(-Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{i Q x}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
I(-Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{-i Q x}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
I(-Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{-i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{+i\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{-i\left(Q x+\phi_{1}-\phi_{2}\right)}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
I(-Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{-i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(+Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \quad A(-Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x} \\
I(+Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
I(-Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{-i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{-i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

and the two intensities are no longer equal, breaking Friedel's Law

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$
the scattering factor is now

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$
the scattering factor is now

$$
F=r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)}
$$

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$
the scattering factor is now

$$
\begin{aligned}
F & =r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)} \\
& =\left[2 r_{1} \cos \left(Q x_{1}\right)\right] e^{-i \phi_{1}}+\left[2 r_{2} \cos \left(Q x_{2}\right)\right] e^{-i \phi_{2}}
\end{aligned}
$$

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$
the scattering factor is now

$$
\begin{aligned}
F= & r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)} \\
= & {\left[2 r_{1} \cos \left(Q x_{1}\right)\right] e^{-i \phi_{1}}+\left[2 r_{2} \cos \left(Q x_{2}\right)\right] e^{-i \phi_{2}} } \\
I(Q)= & 4\left|f_{1}\right|^{2} \cos ^{2}\left(Q x_{1}\right)+4\left|f_{2}\right|^{2} \cos ^{2}\left(Q x_{2}\right) \\
& +8\left|f_{1}\right|\left|f_{2}\right| \cos \left(Q x_{1}\right) \cos \left(Q x_{2}\right) \cos \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

Friedel's Law with a center of symmetry

It is possible, therefore, to determine the orientation of the two atoms by measuring both $I(Q)$ and $I(-Q)$

However, if there is a center of symmetry in the arrangement of the atoms, Friedel's Law still holds
suppose we have atoms of type 1 at $\pm x_{1}$ and atoms of type 2 at $\pm x_{2}$
the scattering factor is now

$$
\begin{aligned}
F= & r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)} \\
= & {\left[2 r_{1} \cos \left(Q x_{1}\right)\right] e^{-i \phi_{1}}+\left[2 r_{2} \cos \left(Q x_{2}\right)\right] e^{-i \phi_{2}} } \\
I(Q)= & 4\left|f_{1}\right|^{2} \cos ^{2}\left(Q x_{1}\right)+4\left|f_{2}\right|^{2} \cos ^{2}\left(Q x_{2}\right) \\
& +8\left|f_{1}\right|\left|f_{2}\right| \cos \left(Q x_{1}\right) \cos \left(Q x_{2}\right) \cos \left(\phi_{2}-\phi_{1}\right)=I(-Q)
\end{aligned}
$$

Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

build the scattering vector from real and imaginary components with the imaginary part always $\pi / 2$ clockwise compared to the real part

Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

build the scattering vector from real and imaginary components with the imaginary part always $\pi / 2$ clockwise compared to the real part
ignore the resonant terms for the first atom which has a phase angle ϕ_{1}

Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

build the scattering vector from real and imaginary components with the imaginary part always $\pi / 2$ clockwise compared to the real part
ignore the resonant terms for the first atom which has a phase angle ϕ_{1} the scattering factors have the same length

Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

build the scattering vector from real and imaginary components with the imaginary part always $\pi / 2$ clockwise compared to the real part
ignore the resonant terms for the first atom which has a phase angle ϕ_{1}
the scattering factors have the same length
add in a second atom with resonant terms and a phase factor ϕ_{2} due to its relative position in the unit cell

Argand diagram

This can all be described graphically using an Argand (phasor) diagram:

build the scattering vector from real and imaginary components with the imaginary part always $\pi / 2$ clockwise compared to the real part
ignore the resonant terms for the first atom which has a phase angle ϕ_{1}
the scattering factors have the same length
add in a second atom with resonant terms and a phase factor ϕ_{2} due to its relative position in the unit cell
the scattering vectors now have different magnitudes and phases

ZnS example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111\rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

ZnS example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111\rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

Scattering from opposite faces of a single crystal of ZnS gives a different scattering factor and one can deduce the terminating surface atom.

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Atomic scattering factors

Each of the three atoms not at the origin has a scattering factor for \vec{Q} as shown

Left handed scattering factor

Left handed scattering factor

$$
F_{S}=\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{i \phi}+\left|f_{l}\right| e^{-i \phi_{1}} e^{-i \phi}
$$

Right handed scattering factor

Right handed scattering factor

$$
F_{R}=\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{-i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{i \phi}
$$

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

$$
\left|\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{-i \phi}\right|^{2} \neq\left|\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{-i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{i \phi}\right|^{2}
$$

Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion phasing is a technique commonly used in protein crystallography to help solve the "phase problem"

Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion phasing is a technique commonly used in protein crystallography to help solve the "phase problem"

Atoms with an absorption edge in the energy range being scanned have a scattering factor

$$
F_{A}=f_{A}^{0}+f_{A}^{\prime}+i f_{A}^{\prime \prime}
$$

Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion phasing is a technique commonly used in protein crystallography to help solve the "phase problem"

Atoms with an absorption edge in the energy range being scanned have a scattering factor

$$
F_{A}=f_{A}^{0}+f_{A}^{\prime}+i f_{A}^{\prime \prime}
$$

while all the other atoms in the molecule have a total scattering factor $F_{R}=f_{R}^{0}$ with no resonant terms

Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion phasing is a technique commonly used in protein crystallography to help solve the "phase problem"

Atoms with an absorption edge in the energy range being scanned have a scattering factor

$$
F_{A}=f_{A}^{0}+f_{A}^{\prime}+i f_{A}^{\prime \prime}
$$

while all the other atoms in the molecule have a total scattering factor $F_{R}=f_{R}^{0}$ with no resonant terms
At energies far away from the absorption edge, the scattering factors of the anomalous atoms with angle ϕ_{A} and the rest of the molecule with angle ϕ_{R} add vectorially in an Argand diagram to give the molecule scattering factor

$F_{\text {mol }}$ with phase angle $\phi_{\text {mol }}$

Multi-wavelength anomalous dispersion

Multi-wavelength anomalous dispersion

As the x-ray energy approaches the absorption edge, a resonant term f_{A}^{\prime} grows with opposite sign from f_{A}^{0} but there is no dissipative term

Multi-wavelength anomalous dispersion

As the x-ray energy approaches the absorption edge, a resonant term f_{A}^{\prime} grows with opposite sign from f_{A}^{0} but there is no dissipative term

At the absorption edge, a large dissipative term, $f_{A}^{\prime \prime}$, appears with a $\pi / 2$ phase shift compared to f_{A}^{\prime}

Multi-wavelength anomalous dispersion

$\operatorname{Im}\{F\}$

As the x-ray energy approaches the absorption edge, a resonant term f_{A}^{\prime} grows with opposite sign from f_{A}^{0} but there is no dissipative term

At the absorption edge, a large dissipative term, $f_{A}^{\prime \prime}$, appears with a $\pi / 2$ phase shift compared to f_{A}^{\prime}
Once past the absorption edge both f_{A}^{\prime} and $f_{A}^{\prime \prime}$ shrink

Multi-wavelength anomalous dispersion

As the x-ray energy approaches the absorption edge, a resonant term f_{A}^{\prime} grows with opposite sign from f_{A}^{0} but there is no dissipative term

At the absorption edge, a large dissipative term, $f_{A}^{\prime \prime}$, appears with a $\pi / 2$ phase shift compared to f_{A}^{\prime}
Once past the absorption edge both f_{A}^{\prime} and $f_{A}^{\prime \prime}$ shrink eventually returning to zero at high energies

Multi-wavelength anomalous dispersion

As the x-ray energy approaches the absorption edge, a resonant term f_{A}^{\prime} grows with opposite sign from f_{A}^{0} but there is no dissipative term

At the absorption edge, a large dissipative term, $f_{A}^{\prime \prime}$, appears with a $\pi / 2$ phase shift compared to f_{A}^{\prime}

Once past the absorption edge both f_{A}^{\prime} and $f_{A}^{\prime \prime}$ shrink eventually returning to zero at high energies

The change in the scattering factor of each Bragg reflection can be used to locate the position of the resonant atoms in the structure

