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X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not
considered in scattering experiments
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X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not
considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

in a normal x-ray absorption event, the )
selection rules for a transition are Al = p i=3/2
+1, Am=0,+1

s f~o—o- =12
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X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not
considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

in a normal x-ray absorption event, the — Mm=+1
selection rules for a transition are A/ = p{ —0— m=0
+1, Am=10,+1 —()— m=-1

if circularly polarized x-rays are used,
however, the selection rules for m de- h
pend on the “handedness” of the radi-

. .
ation
s
Am = +1 for “right-handed"” )(\

1S —— — - m= O

C. Segre (lIT) PHYS 570 - Spring 2020 April 07, 2020

2/14



X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not

considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

in a normal x-ray absorption event, the

selection rules for a transition are A/ = p{ -
+1, Am=0,+1 P
if circularly polarized x-rays are used, s _
however, the selection rules for m de- hV :
pend on the “handedness” of the radi- N :
ation :
Am = +1 for “right-handed \‘\‘
Am = —1 for “left-handed” s

C. Segre (IIT) PHYS 570 - Spring 2020

April 07, 2020

2/14



X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not

considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

in a normal x-ray absorption event, the

selection rules for a transition are A/ = p{ -
+1, Am=0,+1 P
if circularly polarized x-rays are used, s _
however, the selection rules for m de- hV :
pend on the “handedness” of the radi- N :
ation :
Am = +1 for “right-handed \‘\‘
Am = —1 for “left-handed” s

-— m:O

this measurement is sensitive to the internal/external magnetic fields

which split the levels according to the Zeeman effect
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XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the
polarization (quarter wave plate) or a sample whose magnetic splittings
can be inverted by flipping an external magnetic field
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XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the
polarization (quarter wave plate) or a sample whose magnetic splittings
can be inverted by flipping an external magnetic field

The absorption coefficient is first
measured for both relative orienta-
tions of magnetic splitting and cir-
cular polarization
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XMCD of Yb14|\/|nSb11

The Zintl compounds exhibit interesting magnetic properties including
colossal magnetoresistance which can be of value for spintronics
applications

“XMCD Characterization of the Ferromagnetic State of Ybj4MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14|\/|nSb11

The Zintl compounds exhibit interesting magnetic properties including
colossal magnetoresistance which can be of value for spintronics
applications

The Zintl compound, Yb14MnSby; is
ferromagnetic below below 56K with a
moment of ~ 4pg/formula unit

The Mn atom is in a tetrahedral en-
vironment surrounded by 4 Sb atoms
and there are linear chains of Sb (black)
atoms surrounded by Yb (blue) atoms

XMCD on a single crystal of Yb14MnSbi; can be used to understand the
origin of the ferromagnetic moment

“XMCD Characterization of the Ferromagnetic State of Ybj4MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14|\/|nSb11
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“XMCD Characterization of the Ferromagnetic State of Yb14MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14|\/|nSb11

The Yb XMCD shows no asymmetry
due to polarization
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“XMCD Characterization of the Ferromagnetic State of Yb14MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14|\/|nSb11

1

i The Yb XMCD shows no asymmetry
] due to polarization

The Mn spectrum shows a significant
asymmetry in opposite directions for
the L3 and L, edges
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“XMCD Characterization of the Ferromagnetic State of Yb14MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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XMCD of Yb14|\/|nSb11

150
Energy (V)

The Yb XMCD shows no asymmetry
due to polarization

The Mn spectrum shows a significant
asymmetry in opposite directions for
the L3 and Ly edges

The Sb edges show a tiny asymmetry
that is in opposite sign compared to
the Mn edges

Mn provides the bulk of the magnetic
moment and appears to be in the di-
valent state. Sb provides a small anti-
ferromagnetic component to the over-
all magnetic moment

“XMCD Characterization of the Ferromagnetic State of Yb14MnSb;1,” A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill,
W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).
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® Resonant Scattering
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.
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Up to now, scattering has been treated classically and the result of
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This is not a good approximation since we know:

F(Q,w) = Q) + f'(w) + if"(w)

The absorption cross section can be
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = Q) + f'(w) + if"(w)

|

© The absorption cross section can be
‘ modeled as a sum of forced, dissi-
pative oscillators with distribution

= g(ws).
This will produce the resonant scat-
tering term but not the XANES and
EXAFS, which are purely quantum

effects.

=
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = fO(Q) + f'(w) + if"(w)

(d) | The absorption cross section can be
modeled as a sum of forced, dissi-
pative oscillators with distribution

o g(ws).
| This will produce the resonant scat-
| J tering term but not the XANES and

EXAFS, which are purely quantum
effects.

9(wy)

Photon energy
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Forced charged oscillator

Consider an electron under the in-

fluence of an oscillating electric
field E;, = XEge™'“*.
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Forced charged oscillator

Consider an electron under the in-

—_— . ) _ ) eEy\ .
fluence of an oscillating electric X+Tx4wx=—(—7)e ot
field E;, = XEge™'“*. m
where [ is the damping constant,

ws is the resonant frequency of the
oscillator, and ' <« ws.
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Forced charged oscillator

Consider an electron under the in-
fluence of an oscillating electric
field E;, = XEge™'“*.

where [ is the damping constant,

ws is the resonant frequency of the
oscillator, and ' <« ws.

assuming a solution of the form
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%4 Tx+wix = — (eo) it
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Forced charged oscillator

Consider an electron under the in-
fluence of an oscillating electric
field E;, = XEge— vt

where [ is the damping constant,
ws is the resonant frequency of the
oscillator, and ' <« ws.

assuming a solution of the form

(—w? — iwl 4+ w?)xpe "t = — (

E .
%4 Tx+wix = — (eo) it
m

(B
T\ m ) (w2

x = xge @t
x = —iwxge 't
X = —wxpe Wt
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Forced charged oscillator

Consider an electron under the in-

fluence of an oscillating electric X4+ Tx 4 w?x = — (eEO) o iwt
field E;, = XEge™"*. m

where [ is the damping constant, _

ws is the resonant frequency of the x = xpe "t

oscillator, and I' < ws. X = —iwxpe @t
assuming a solution of the form X = —w?xge Wt

m

eEO 1
x=-|(—
0 m ) (w? —w? — iwl)

The amplitude of the response has a resonance and dissipation

, E, ,
(—w? — iwl 4+ w?)xpe "t = — (eo> e 'Vt
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).
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t' =t — R/c (allowing for the travel time to the detector).
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).
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The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).
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which is an outgoing spherical wave
with scattering amplitude
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).

e . € —iwt _iw
EuslR.0) = (groopen) 5~ R0 = (oo ) (~epae reh

w2 2 g kR
T (w2 —w? —jwl) (47reomc2) o€ (R)
Erad(Ra t) = _n (“)2 eikR = —nf. £
En  2W-—w2+iwnH\ R ) O°UR
w2

which is an outgoing spherical wave

with scattering amplitude fs = (@7 — o2 & iwl)
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Dispersion corrections

The scattering factor can be 5
rewritten f. =

(w? — w2 4 iwlh)
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Dispersion corrections

The scattering factor can be

2 2 -r__2 il
rewritten fs:w + (—wg + iwl) — (w5 + iwl)

(w? — w2+ iwl)
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Dispersion corrections

The scattering factor can be W2 4 (=62 4 il) — (—w? + iwh)

rewritten f. =
° (w? — w2 + iwl)
14 w2 — jwl

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be

2 2 il — (— 2 il
rewritten fs:w + (—ws + iwl) ( ws +iwl)
(w? — w2+ iwl)
and since [ < ws 14 w2 — jwl

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be

rewritten £ w? 4+ (—w? + iwl) = (—w? + iwl)
’ (w? — w2 + iwl)
and since [ < wq P wg il
N (w? — w2 + iwlh)
~1+ wg

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction

C. Segre (IIT)

w? + (—w? + iwl) — (—w? + iwl)

=1+

~1+
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction
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w? + (—w? + iwl) — (—w? + iwl)

(w? — w2 + iwl)

w

2

s —

iwl
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2
s

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted
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Dispersion corrections

The scattering factor can be

w? + (—w? + iwl) — (—w? + iwl)

rewritten f. = :
° (w? — w2 + iwl)
and since [ < ws 14 w2 — iwl
N (w? — w2 + iwl)
s
the second term being the ~14 w?
dispersion correction whose - (w? — w2 + iwl
o i K
rents con b extrncted | M) = £ =
(w? — w? + iwl)
() w? (w? — w2 —iwl)
w) = . : .
X (w? —w2 4 iwl)  (w? — w2 — iwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted

w? + (—w? + iwl) — (—w? + iwl)
(w? — w2 + iwl)
w2 — jwl

(w? — w2 + iwl)

2

w

~1 >
+ (W2 — w2+ /wr)

w

=1+

S

S (w2 — w2+ iwl)

() w2 (w? —w? —jwl)  w?(w? —w? — jwl)

w) = —

X (W2 — w2 4 iwl) (w2 — w2 —iwl) (W2 — w2)? 4 (wl)?
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted

w? + (—w? + iwl) — (—w? + iwl)
(w? — w2 + iwl)
w2 — jwl

(w? — w2 + iwl)

2

w

~1 >
+ (W2 — w2+ /wr)

w

=1+

S

S (w2 — w2+ iwl)

(w? —w? —jwl)  w?(w? —w? — jwl)

(@) s

w) = .

X (w? — w2 4 iwlh)
w3 (w?® —w?)

fl =

SO ot
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Dispersion corrections

The scattering factor can be

w? + (—w? + iwl) — (—w? + iwl)

rewritten f. =
° (w? — w2 + iwl)
and since [ < ws 14 w2 — jwl
(w? — w2 + iwl)
the second term being the w?
: . , ~1+
dispersion correction whose (w? — w2+ /wr)
real and imaginary compo- w2
! =l
nents can be extracted x(w) = fi +ify = (W2 — w§S+ iwl)
(@) = w2 ' (w? —w? —jwl)  w?(w? —w? — jwl)
(W2 — w2 4 iwl) (w2 — w2 —iwl) (W2 — w2)? 4 (wl)?
£ wi(w? — wi) Fr_ wiwl
T (WP wg)? o (wh)? T (WP oW+ (wl)?
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Single oscillator dispersion terms

These dispersion terms give
resonant corrections to the
scattering factor
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Single oscillator dispersion terms

These dispersion terms give
resonant corrections to the
scattering factor
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Single oscillator dispersion terms

These dispersion terms give
resonant corrections to the
scattering factor

P e
WP (W)

B w2wl
’ (w? = wZ)? + (wl)? 05 08 ‘1 ‘. |
W/ 0

C. Segre (IIT) PHYS 570 - Spring 2020 April 07, 2020 12/14



Total cross-section

The total cross-section for scatter-
ing from a free electron is
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Total cross-section

81\

i Ofree = | — | 1

The total cross-section for scatter- ree 3 0
ing from a free electron is
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Total cross-section

81\
i Ofree = | — | 1
The total cross-section for scatter- ree 3 0

ing from a free electron is

for an electron bound to an atom,
we can now generalize
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Total cross-section

The total cross-section for scatter-

ing from a free electron is

oT =

for an electron bound to an atom,

we can now generalize

this shows a frequency dependence

with a peak at w ~ ws
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Total cross-section

81\
O free = ? I0)

The total cross-section for scatter-

ing from a free electron is <87r> w )
orT =\ — Iq
2 2)2 2'0
for an electron bound to an atom, 3 ) (w? —ws)? + (wl)
we can now generalize
7

this shows a frequency dependence
with a peak at w ~ ws

O7/Cfee
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Total cross-section

8w
i Ofree = | — | 1
The total cross-section for scatter- ree 3 0
ing from a free electron is

r,
2)2 2'0

for an electron bound to an atom, —wz)? + (wr)

we can now generalize

this shows a frequency dependence
with a peak at w ~ ws

if w <« ws and when ' — 0, the
cross-section becomes
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Total cross-section
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i Ofree = | — | 1
The total cross-section for scatter- ree 3 0
ing from a free electron is

r,
2)2 2'0

for an electron bound to an atom, —wz)? + (wr)

we can now generalize

this shows a frequency dependence
with a peak at w ~ ws
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Total cross-section

8
i Ofree = | — | 1t
The total cross-section for scatter- ree 3 0
ing from a free electron is

r,
2)2 2'0

for an electron bound to an atom, —wz)? + (wr)

we can now generalize

this shows a frequency dependence
with a peak at w ~ ws

if w <« ws and when ' — 0, the
cross-section becomes

or= (E7) (2) 2
T_3 Ws 0

when w > ws, 0T — Tfree
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