Today's outline - April 07, 2020

Today's outline - April 07, 2020

- X-ray magnetic circular dichroism

Today's outline - April 07, 2020

- X-ray magnetic circular dichroism

Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Today's outline - April 07, 2020

- X-ray magnetic circular dichroism

Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020

Homework Assignment \#07:
Chapter 7: 2,3,9,10,11
due Thursday, April 23, 2020

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays in a normal x-ray absorption event, the selection rules for a transition are $\Delta I=$ $\pm 1, \Delta m=0, \pm 1$

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays
in a normal x-ray absorption event, the selection rules for a transition are $\Delta I=$ $\pm 1, \Delta m=0, \pm 1$
if circularly polarized x-rays are used, however, the selection rules for m depend on the "handedness" of the radiation

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays
in a normal x-ray absorption event, the selection rules for a transition are $\Delta I=$ $\pm 1, \Delta m=0, \pm 1$
if circularly polarized x-rays are used, however, the selection rules for m depend on the "handedness" of the radiation
$\Delta m=+1$ for "right-handed"

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays
in a normal x-ray absorption event, the selection rules for a transition are $\Delta I=$ $\pm 1, \Delta m=0, \pm 1$
if circularly polarized x-rays are used, however, the selection rules for m depend on the "handedness" of the radiation
$\Delta m=+1$ for "right-handed"
$\Delta m=-1$ for "left-handed"

X-ray magnetic circular dichroism

The interaction x-rays with magnetic systems is generally weak and not considered in scattering experiments

One exception is the absorption coefficient of circularly polarized x-rays in a normal x-ray absorption event, the selection rules for a transition are $\Delta I=$ $\pm 1, \Delta m=0, \pm 1$
if circularly polarized x-rays are used, however, the selection rules for m depend on the "handedness" of the radiation
$\Delta m=+1$ for "right-handed"
$\Delta m=-1$ for "left-handed"

this measurement is sensitive to the internal/external magnetic fields which split the levels according to the Zeeman effect

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field

The absorption coefficient is first measured for both relative orientations of magnetic splitting and circular polarization

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field

The absorption coefficient is first measured for both relative orienta-

$$
\mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right)
$$ tions of magnetic splitting and circular polarization

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field

The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$

tions of magnetic splitting and circular polarization
these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$

tions of magnetic splitting and circular polarization
these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

$$
m_{o r b}=-\frac{4 q\left(10-n_{3 d}\right)}{r}
$$

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$ tions of magnetic splitting and circular polarization

these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

$$
\begin{aligned}
& m_{\text {orb }}=-\frac{4 q\left(10-n_{3 d}\right)}{r} \\
& m_{\text {spin }} \approx-\frac{(6 p-4 q)\left(10-n_{3 d}\right)}{r}
\end{aligned}
$$

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$ tions of magnetic splitting and circular polarization

these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

$$
p=\int_{L_{3}}\left(\mu^{+}-\mu^{-}\right) d \mathcal{E}
$$

$$
\begin{aligned}
& m_{\text {orb }}=-\frac{4 q\left(10-n_{3 d}\right)}{r} \\
& m_{\text {spin }} \approx-\frac{(6 p-4 q)\left(10-n_{3 d}\right)}{r}
\end{aligned}
$$

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$ tions of magnetic splitting and circular polarization

these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

$$
\begin{aligned}
& m_{\text {orb }}=-\frac{4 q\left(10-n_{3 d}\right)}{r} \\
& m_{\text {spin }} \approx-\frac{(6 p-4 q)\left(10-n_{3 d}\right)}{r}
\end{aligned}
$$

$$
\begin{aligned}
p & =\int_{L_{3}}\left(\mu^{+}-\mu^{-}\right) d \mathcal{E} \\
q & =\int_{L_{3}+L_{2}}\left(\mu^{+}-\mu^{-}\right) d \mathcal{E}
\end{aligned}
$$

XMCD and electron sum rules

The XMCD experiment requires a source capable of switching the polarization (quarter wave plate) or a sample whose magnetic splittings can be inverted by flipping an external magnetic field
The absorption coefficient is first measured for both relative orienta-

$$
\begin{aligned}
& \mu^{+}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{+}}{I_{t}^{+}}\right) \\
& \mu^{-}(\mathcal{E})=\frac{1}{x} \ln \left(\frac{I_{0}^{-}}{I_{t}^{-}}\right)
\end{aligned}
$$ tions of magnetic splitting and circular polarization

these absorption coefficients can be used at the L_{3} and L_{2} edges to compute the orbital ($m_{\text {orb }}$) and spin ($m_{\text {spin }}$) magnetic moments in $\mu_{B} /$ atom

$$
\begin{aligned}
& m_{\text {orb }}=-\frac{4 q\left(10-n_{3 d}\right)}{r} \\
& m_{\text {spin }} \approx-\frac{(6 p-4 q)\left(10-n_{3 d}\right)}{r}
\end{aligned}
$$

$$
\begin{aligned}
p & =\int_{L_{3}}\left(\mu^{+}-\mu^{-}\right) d \mathcal{E} \\
q & =\int_{L_{3}+L_{2}}\left(\mu^{+}-\mu^{-}\right) d \mathcal{E} \\
r & =\int_{L_{3}+L_{2}}\left(\mu^{+}+\mu^{-}\right) d \mathcal{E}
\end{aligned}
$$

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Zintl compounds exhibit interesting magnetic properties including colossal magnetoresistance which can be of value for spintronics applications

"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Zintl compounds exhibit interesting magnetic properties including colossal magnetoresistance which can be of value for spintronics applications

The Zintl compound, $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$ is ferromagnetic below below 56 K with a moment of $\sim 4 \mu_{B} /$ formula unit

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Zintl compounds exhibit interesting magnetic properties including colossal magnetoresistance which can be of value for spintronics applications

The Zintl compound, $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$ is ferromagnetic below below 56 K with a moment of $\sim 4 \mu_{B} /$ formula unit

The Mn atom is in a tetrahedral environment surrounded by 4 Sb atoms and there are linear chains of Sb (black) atoms surrounded by Yb (blue) atoms

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Zintl compounds exhibit interesting magnetic properties including colossal magnetoresistance which can be of value for spintronics applications

The Zintl compound, $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$ is ferromagnetic below below 56 K with a moment of $\sim 4 \mu_{B} /$ formula unit

The Mn atom is in a tetrahedral environment surrounded by 4 Sb atoms and there are linear chains of Sb (black) atoms surrounded by Yb (blue) atoms

XMCD on a single crystal of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$ can be used to understand the origin of the ferromagnetic moment
"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Yb XMCD shows no asymmetry due to polarization

"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Yb XMCD shows no asymmetry due to polarization
The Mn spectrum shows a significant asymmetry in opposite directions for the L_{3} and L_{2} edges
"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Yb XMCD shows no asymmetry due to polarization
The Mn spectrum shows a significant asymmetry in opposite directions for the L_{3} and L_{2} edges
The Sb edges show a tiny asymmetry that is in opposite sign compared to the Mn edges
"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

XMCD of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$

The Yb XMCD shows no asymmetry due to polarization
The Mn spectrum shows a significant asymmetry in opposite directions for the L_{3} and L_{2} edges
The Sb edges show a tiny asymmetry that is in opposite sign compared to the Mn edges

Mn provides the bulk of the magnetic moment and appears to be in the divalent state. Sb provides a small antiferromagnetic component to the overall magnetic moment
"XMCD Characterization of the Ferromagnetic State of $\mathrm{Yb}_{14} \mathrm{MnSb}_{11}$," A.P. Holm, S.M. Kauzlarich, S.A. Morton, G.D. Waddill, W.E. Pickett, and J.G. Tobin, J. Am. Chem. Soc. 124, 9894-9898 (2002).

Today's outline - April 07, 2020 (part B)

Today's outline - April 07, 2020 (part B)

- Resonant Scattering

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

$$
f(\vec{Q}, \omega)=f^{0}(\vec{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

Photon energy

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

$$
f(\vec{Q}, \omega)=f^{0}(\vec{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

The absorption cross section can be modeled as a sum of forced, dissipative oscillators with distribution $g\left(\omega_{s}\right)$.

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

$$
f(\vec{Q}, \omega)=f^{0}(\vec{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

The absorption cross section can be modeled as a sum of forced, dissipative oscillators with distribution $g\left(\omega_{s}\right)$.

[^0]
A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

$$
f(\vec{Q}, \omega)=f^{0}(\vec{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

Photon energy

The absorption cross section can be modeled as a sum of forced, dissipative oscillators with distribution $g\left(\omega_{s}\right)$.

This will produce the resonant scattering term but not the XANES and EXAFS, which are purely quantum effects.

A better scattering model

Up to now, scattering has been treated classically and the result of radiation interaction with "free" electrons.

This is not a good approximation since we know:

$$
f(\vec{Q}, \omega)=f^{0}(\vec{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

Photon energy

The absorption cross section can be modeled as a sum of forced, dissipative oscillators with distribution $g\left(\omega_{s}\right)$.

This will produce the resonant scattering term but not the XANES and EXAFS, which are purely quantum effects.

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.
assuming a solution of the form

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the

$$
x=x_{0} e^{-i \omega t}
$$ oscillator, and $\Gamma \ll \omega_{s}$.

assuming a solution of the form

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.

$$
\begin{aligned}
& x=x_{0} e^{-i \omega t} \\
& \dot{x}=-i \omega x_{0} e^{-i \omega t}
\end{aligned}
$$

assuming a solution of the form

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.
assuming a solution of the form

$$
\begin{aligned}
& x=x_{0} e^{-i \omega t} \\
& \dot{x}=-i \omega x_{0} e^{-i \omega t} \\
& \ddot{x}=-\omega^{2} x_{0} e^{-i \omega t}
\end{aligned}
$$

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.

$$
x=x_{0} e^{-i \omega t}
$$

$$
\dot{x}=-i \omega x_{0} e^{-i \omega t}
$$

assuming a solution of the form

$$
\ddot{x}=-\omega^{2} x_{0} e^{-i \omega t}
$$

$$
\left(-\omega^{2}-i \omega \Gamma+\omega_{s}^{2}\right) x_{0} e^{-i \omega t}=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the oscillator, and $\Gamma \ll \omega_{s}$.

$$
x=x_{0} e^{-i \omega t}
$$

$$
\dot{x}=-i \omega x_{0} e^{-i \omega t}
$$

assuming a solution of the form

$$
\ddot{x}=-\omega^{2} x_{0} e^{-i \omega t}
$$

$$
\begin{gathered}
\left(-\omega^{2}-i \omega \Gamma+\omega_{s}^{2}\right) x_{0} e^{-i \omega t}=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t} \\
x_{0}=-\left(\frac{e E_{0}}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{gathered}
$$

Forced charged oscillator

Consider an electron under the influence of an oscillating electric field $\vec{E}_{i n}=\hat{x} E_{0} e^{-i \omega t}$.

$$
\ddot{x}+\Gamma \dot{x}+\omega_{s}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t}
$$

where Γ is the damping constant, ω_{s} is the resonant frequency of the

$$
x=x_{0} e^{-i \omega t}
$$ oscillator, and $\Gamma \ll \omega_{s}$.

$$
\dot{x}=-i \omega x_{0} e^{-i \omega t}
$$

assuming a solution of the form

$$
\ddot{x}=-\omega^{2} x_{0} e^{-i \omega t}
$$

$$
\begin{gathered}
\left(-\omega^{2}-i \omega \Gamma+\omega_{s}^{2}\right) x_{0} e^{-i \omega t}=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t} \\
x_{0}=-\left(\frac{e E_{0}}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{gathered}
$$

The amplitude of the response has a resonance and dissipation

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
E_{r a d}(R, t)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)
$$

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
E_{r a d}(R, t)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c}
$$

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
\begin{aligned}
E_{r a d}(R, t) & =\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c} \\
& =\frac{\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right) E_{0} e^{-i \omega t}\left(\frac{e^{i k R}}{R}\right)
\end{aligned}
$$

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
\begin{aligned}
E_{r a d}(R, t) & =\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c} \\
& =\frac{\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right) E_{0} e^{-i \omega t}\left(\frac{e^{i k R}}{R}\right) \\
\frac{E_{r a d}(R, t)}{E_{i n}} & =-r_{0} \frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}\left(\frac{e^{i k R}}{R}\right)
\end{aligned}
$$

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
\begin{aligned}
E_{r a d}(R, t) & =\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c} \\
& =\frac{\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right) E_{0} e^{-i \omega t}\left(\frac{e^{i k R}}{R}\right) \\
\frac{E_{r a d}(R, t)}{E_{i n}} & =-r_{0} \frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}\left(\frac{e^{i k R}}{R}\right)=-r_{0} f_{s}\left(\frac{e^{i k R}}{R}\right)
\end{aligned}
$$

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
\begin{aligned}
E_{r a d}(R, t) & =\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c} \\
& =\frac{\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right) E_{0} e^{-i \omega t}\left(\frac{e^{i k R}}{R}\right) \\
\frac{E_{r a d}(R, t)}{E_{i n}} & =-r_{0} \frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}\left(\frac{e^{i k R}}{R}\right)=-r_{0} f_{s}\left(\frac{e^{i k R}}{R}\right)
\end{aligned}
$$

which is an outgoing spherical wave with scattering amplitude

Radiated field

The radiated (scattered) electric field at a distance R from the electron is directly proportional to the electron's acceleration with a retarded time $t^{\prime}=t-R / c$ (allowing for the travel time to the detector).

$$
\begin{aligned}
E_{r a d}(R, t) & =\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right) \ddot{x}(t-R / c)=\left(\frac{e}{4 \pi \epsilon_{0} R c^{2}}\right)\left(-\omega^{2}\right) x_{0} e^{-i \omega t} e^{i \omega R / c} \\
& =\frac{\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right) E_{0} e^{-i \omega t}\left(\frac{e^{i k R}}{R}\right) \\
\frac{E_{r a d}(R, t)}{E_{i n}} & =-r_{0} \frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}\left(\frac{e^{i k R}}{R}\right)=-r_{0} f_{s}\left(\frac{e^{i k R}}{R}\right)
\end{aligned}
$$

which is an outgoing spherical wave with scattering amplitude

$$
f_{s}=\frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
f_{s}=\frac{\omega^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
f_{s}=\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

the second term being the dispersion correction

$$
\chi(\omega)=f_{s}^{\prime}+i f_{s}^{\prime \prime}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
\chi(\omega) & =f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

the second term being the dispersion correction

Dispersion corrections

The scattering factor can be rewritten
and since $\Gamma \ll \omega_{s}$
the second term being the dispersion correction whose real and imaginary components can be extracted

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
\chi(\omega) & =f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

and since $\Gamma \ll \omega_{s}$
the second term being the dispersion correction whose

$$
\approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$ real and imaginary components can be extracted

$$
\chi(\omega)=f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

$$
\chi(\omega)=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \cdot \frac{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

and since $\Gamma \ll \omega_{s}$
the second term being the dispersion correction whose

$$
\approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$ real and imaginary components can be extracted

$$
\chi(\omega)=f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

$$
\chi(\omega)=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \cdot \frac{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}=\frac{\omega_{s}^{2}\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

and since $\Gamma \ll \omega_{s}$
the second term being the dispersion correction whose

$$
\approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$ real and imaginary components can be extracted

$$
\chi(\omega)=f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

$$
\begin{aligned}
\chi(\omega) & =\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \cdot \frac{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}=\frac{\omega_{s}^{2}\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
f_{s}^{\prime} & =\frac{\omega_{s}^{2}\left(\omega^{2}-\omega_{s}^{2}\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Dispersion corrections

The scattering factor can be rewritten

$$
\begin{aligned}
f_{s} & =\frac{\omega^{2}+\left(-\omega_{s}^{2}+i \omega \Gamma\right)-\left(-\omega_{s}^{2}+i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& =1+\frac{\omega_{s}^{2}-i \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \\
& \approx 1+\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
\end{aligned}
$$

and since $\Gamma \ll \omega_{s}$
the second term being the dispersion correction whose real and imaginary components can be extracted

$$
\chi(\omega)=f_{s}^{\prime}+i f_{s}^{\prime \prime}=\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)}
$$

$$
\begin{aligned}
\chi(\omega) & =\frac{\omega_{s}^{2}}{\left(\omega^{2}-\omega_{s}^{2}+i \omega \Gamma\right)} \cdot \frac{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}=\frac{\omega_{s}^{2}\left(\omega^{2}-\omega_{s}^{2}-i \omega \Gamma\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
f_{s}^{\prime} & =\frac{\omega_{s}^{2}\left(\omega^{2}-\omega_{s}^{2}\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \quad f_{s}^{\prime \prime}=-\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Single oscillator dispersion terms

These dispersion terms give resonant corrections to the scattering factor

Single oscillator dispersion terms

These dispersion terms give resonant corrections to the scattering factor

$$
f_{s}^{\prime}=\frac{\omega_{s}^{2}\left(\omega^{2}+\omega_{s}^{2}\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Single oscillator dispersion terms

These dispersion terms give resonant corrections to the scattering factor

$$
\begin{aligned}
& f_{s}^{\prime}=\frac{\omega_{s}^{2}\left(\omega^{2}+\omega_{s}^{2}\right)}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& f_{s}^{\prime \prime}=-\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Total cross-section

The total cross-section for scattering from a free electron is

Total cross-section

The total cross-section for scatter-

$$
\sigma_{\text {free }}=\left(\frac{8 \pi}{3}\right) r_{0}^{2}
$$ ing from a free electron is

Total cross-section

The total cross-section for scatter-

$$
\sigma_{\text {free }}=\left(\frac{8 \pi}{3}\right) r_{0}^{2}
$$ ing from a free electron is

for an electron bound to an atom, we can now generalize

Total cross-section

The total cross-section for scattering from a free electron is
for an electron bound to an atom,

$$
\begin{aligned}
\sigma_{\text {free }} & =\left(\frac{8 \pi}{3}\right) r_{0}^{2} \\
\sigma_{T} & =\left(\frac{8 \pi}{3}\right) \frac{\omega^{4}}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
\end{aligned}
$$ we can now generalize

this shows a frequency dependence with a peak at $\omega \approx \omega_{s}$

Total cross-section

The total cross-section for scatter-

$$
\begin{aligned}
\sigma_{\text {free }} & =\left(\frac{8 \pi}{3}\right) r_{0}^{2} \\
\sigma_{T} & =\left(\frac{8 \pi}{3}\right) \frac{\omega^{4}}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
\end{aligned}
$$

we can now generalize
this shows a frequency dependence with a peak at $\omega \approx \omega_{s}$

Total cross-section

The total cross-section for scatter-

$$
\begin{aligned}
\sigma_{\text {free }} & =\left(\frac{8 \pi}{3}\right) r_{0}^{2} \\
\sigma_{T} & =\left(\frac{8 \pi}{3}\right) \frac{\omega^{4}}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
\end{aligned}
$$ we can now generalize

this shows a frequency dependence with a peak at $\omega \approx \omega_{s}$
if $\omega \ll \omega_{s}$ and when $\Gamma \rightarrow 0$, the cross-section becomes

Total cross-section

The total cross-section for scatter-

$$
\begin{aligned}
\sigma_{\text {free }} & =\left(\frac{8 \pi}{3}\right) r_{0}^{2} \\
\sigma_{T} & =\left(\frac{8 \pi}{3}\right) \frac{\omega^{4}}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
\end{aligned}
$$ we can now generalize

this shows a frequency dependence with a peak at $\omega \approx \omega_{s}$
if $\omega \ll \omega_{s}$ and when $\Gamma \rightarrow 0$, the cross-section becomes

$$
\sigma_{T}=\left(\frac{8 \pi}{3}\right)\left(\frac{\omega}{\omega_{s}}\right)^{4} r_{0}^{2}
$$

Total cross-section

The total cross-section for scatter-

$$
\begin{aligned}
\sigma_{\text {free }} & =\left(\frac{8 \pi}{3}\right) r_{0}^{2} \\
\sigma_{T} & =\left(\frac{8 \pi}{3}\right) \frac{\omega^{4}}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
\end{aligned}
$$ we can now generalize

this shows a frequency dependence with a peak at $\omega \approx \omega_{s}$
if $\omega \ll \omega_{s}$ and when $\Gamma \rightarrow 0$, the cross-section becomes

$$
\sigma_{T}=\left(\frac{8 \pi}{3}\right)\left(\frac{\omega}{\omega_{s}}\right)^{4} r_{0}^{2}
$$

when $\omega \gg \omega_{s}, \sigma_{T} \rightarrow \sigma_{\text {free }}$

[^0]: Photon energy

