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The photoemission process

Photoemission is the complement to XAFS. It probes the filled states
below the Fermi level

φ = Ev − EF

The dispersion relation of electrons in
a solid, E(~q) can be probed by angle
resolved photoemission since both the
kinetic energy, Ekin, and the angle, θ
are measured

Ekin, θ −→ E(~q)

The core levels are tightly bound at an
energy EC below the Fermi level

The work function, φ, is the minimum
energy required to promote an electron
from the top of the valence band at
the Fermi energy, EF , to the vacuum
energy, Ev
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The photoemission process

With the incident photon energy, ~ω, held constant, an analyzer is used to
measure the kinetic energy, Ekin, of the photoelectrons emitted from the
surface of the sample

if Ei is the initial energy of the elec-
tron, the binding energy, EB is

EB = EF − Ei
and the measured kinetic energy
gives the binding energy

Ekin =
~2q2v
2m

= ~ω − φ− EB
the maximum kinetic energy mea-
sured is thus related to the Fermi
energy

the core states are used to finger-
print the chemical composition of
the sample
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Hemispherical mirror analyzer

The electric field between the two
hemispheres of radius R1 and R2

has a R2 dependence from the cen-
ter of the hemispheres

Electrons with E0, called the “pass
energy”, will follow a circular path
of radius

R0 = (R1 + R2)/2

Electrons with lower energy will fall inside this circular path while those
with higher energy will fall outside

Electrons with different azimuthal exit angles ω will map to different
positions on the 2D detector
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Photoelectron momentum

The total momentum of the photoelec-
tron is calculated from the measured
kinetic energy

since the momentum of the electron
parallel to the surface must be con-
served, the original momentum of the
electron can be computed from the po-
lar angle of the sample to the detector
and the azimuthal angle measured on
the 2D detector

the perpendicular component of the
original momentum can be obtained by
assuming a free electron and measuring
the inner potential, V0 at θ = 0

ω

θ

~qe =
√

2mEkin
~q‖x = ~qe sin θ cosω

~q‖y = ~qe sin θ sinω

~q⊥ =
√

2m(Ekin cos2 θ + V0)

the electron dispersion curve can be fully mapped by sample rotations
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HAXPES

Photoemission spectroscopy is generally used for surface sensitive
measurements because of the low energy of the incident photons (< 2 keV)

High energy synchrotrons offer the opportunity to use hard x-ray
photoelectron spectroscopy (HAXPES)
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ability to measure bulk pho-
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faces as well as the surface
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HAXPES of buried interfaces

HAXPES is used to probe the thickness of a CoFe2O4/La0.66Sr0.34MnO3

heterostructure by varying both angle of incidence and photon energy

The thickness of the CoFe2O4 over-
layer measured as 6.5 ± 0.5 nm by
TEM was probed in two ways:

using 4.8 keV photons and vary-
ing the angle, the thickness is es-
timated to be 8.0± 2.0 nm

using photon energies from 4.0 keV
to 6.0 keV, the thickness was esti-
mated to be 6.8± 2.8 nm

Both results give consistent results with proper normalization and also
show the uniformity of the CoFe2O4 overlayer

B. Pal, S. Mukherjee, and D.D. Sarma, “Probing complex heterostructures using hard x-ray photoelectron spectroscopy
(HAXPES),” J. Electron Spect. Related Phenomena 200, 332-339 (2015).
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(HAXPES),” J. Electron Spect. Related Phenomena 200, 332-339 (2015).
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HAXPES of Zn1−xCdxSe1−ySy nanocrystals

With nanoparticles, energy dispersive measurements can provide depth
profiling of spherical nanoparticles

HAXPES at energies
ranging from 1.4 keV
to 3.0 keV are used to
probe the S/Se ratio at
varying depths of the 5
nm diameter nanopar-
ticles

By fitting the S 2p and Se 3p photoemission line the structure is revealed
to be CdSe at the core and ZnCdS in the outer shell
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HAXPES of Si anodes

Si nanoparticle anodes suffer from the accumulation of the SEI layer which
reduces performance. The SEI is formed by electrochemical decomposition
of the electrolyte at the anode surface.

The SEI from three different elec-
trolyte combinations were stud-
ied: ethylene carbonate (EC), flu-
oroethylene carbonate (FEC), and
a combination. The first of which
gives poorer capacity and cycling
stability.

HAXPES is used to determine the
elemental distribution and com-
pounds present as a function of
depth in the cycled Si anode.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase
(SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011 (2015).

C. Segre (IIT) PHYS 570 - Spring 2020 April 02, 2020 10 / 16



HAXPES of Si anodes

Si nanoparticle anodes suffer from the accumulation of the SEI layer which
reduces performance. The SEI is formed by electrochemical decomposition
of the electrolyte at the anode surface.

The SEI from three different elec-
trolyte combinations were stud-
ied: ethylene carbonate (EC), flu-
oroethylene carbonate (FEC), and
a combination. The first of which
gives poorer capacity and cycling
stability.

HAXPES is used to determine the
elemental distribution and com-
pounds present as a function of
depth in the cycled Si anode.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase
(SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011 (2015).

C. Segre (IIT) PHYS 570 - Spring 2020 April 02, 2020 10 / 16



HAXPES of Si anodes

Si nanoparticle anodes suffer from the accumulation of the SEI layer which
reduces performance. The SEI is formed by electrochemical decomposition
of the electrolyte at the anode surface.

The SEI from three different elec-
trolyte combinations were stud-
ied: ethylene carbonate (EC), flu-
oroethylene carbonate (FEC), and
a combination. The first of which
gives poorer capacity and cycling
stability.

HAXPES is used to determine the
elemental distribution and com-
pounds present as a function of
depth in the cycled Si anode.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase
(SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011 (2015).

C. Segre (IIT) PHYS 570 - Spring 2020 April 02, 2020 10 / 16



HAXPES of Si anodes

Si nanoparticle anodes suffer from the accumulation of the SEI layer which
reduces performance. The SEI is formed by electrochemical decomposition
of the electrolyte at the anode surface.

The SEI from three different elec-
trolyte combinations were stud-
ied: ethylene carbonate (EC), flu-
oroethylene carbonate (FEC), and
a combination. The first of which
gives poorer capacity and cycling
stability.

HAXPES is used to determine the
elemental distribution and com-
pounds present as a function of
depth in the cycled Si anode.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase
(SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011 (2015).

C. Segre (IIT) PHYS 570 - Spring 2020 April 02, 2020 10 / 16



HAXPES of Si anodes

By varying the incident photon energy, it is
possible to probe the SEI as a function of
depth.

From the carbon peaks, it is seen that:

• increase in carbon concentration is SEI

• SEI visible after first cycle with EC is
likely LEDC (290 eV peak)

• after 5 cycles, buried LEDC
decomposes in EC electrolytes

• pure FEC shows little LEDC

• pure FEC shows less change with
cycling than EC containing electrolytes
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HAXPES of Si anodes

Using HAXPES data from Si, C, and F, a picture of SEI evolution
dependence on electrolyte emerges

as SEI grows, there is growth of
LixSiOy underneath as product
of lithiation/delithiation

EC – SEI contains LEDC-rich
SEI which decomposes but con-
tinues be deposited with cycling

FEC – SEI is mostly poly-FEC
with LiF and LiCO3 which re-
mains stable with cycling

The FEC acts to stabilize the SEI composition and prevent the change
with depth that occurs with EC.

B.T. Young, et al., “Hard x-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase
(SEI) in lithium-ion batteries,” ACS Appl. Mater. Interfaces 7, 20004-20011 (2015).
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Today’s outline - April 02, 2020 (part B)

• Final presentations

• Final project (GU Proposal)

Final Exam (presentations)
Official schedule: Tuesday, May 5, 2020 – 17:00-19:00
Proposed schedule: Tuesday, May 5, 2020 – 15:00 CDT
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Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron
technique

• Get it approved by instructor first!

• Schedule a 15 minute time on Final Exam Day
(tentatively, Tuesday, May 5, 2020, 15:00-19:00)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can
be approached using synchrotron radiation techniques

• Make proposal and get approval from instructor before
starting

• Must be different techique than your presentation!
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