
Today’s outline - March 31, 2020 (part A)

• In situ studies of methanol fuel cells

1. Pt/Ni cathode catalyst

2. Role of Ru in methanol oxidation

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 02, 2020

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2020
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Mark I operando fuel cell

R. Viswanathan et al., “In-situ XANES study of carbon supported Pt-Ru
anode electrocatalysts for reformate-air polymer electrolyte fuel cells”,
J. Phys. Chem. B 106, 3458 (2002).

• Transmission mode

• <1 mm of graphite

• Pt/Ru on anode

• Pd on cathode

• 35◦C operating temp

• 1-2 min scan time
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Mark II operando fuel cell

E.A. Lewis et al., “Operando x-ray absorption and infrared fuel
cell spectroscopy”, Electrochim. Acta. 56, 8827 (2011).

• Air-breathing cathode

• Pd on anode

• 1.2 mg/cm2 loading

• 50◦C operating temp

• Pt L3 and Ni K edges

• Continuous scan mode @
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Oxygen reduction at a PtNi cathode

U.S. Department of Defense (DoD) Fuel Cell Test and Evaluation
Center (FCTec)

Anode: 0 V vs. SHE

2 H2 −−→ 4 H+ + 4 e–

Cathode: 1.23 V vs. SHE

O2 + 4 H+ + 4 e– −−→ 2 H2O

breaking O−O bond is the rate
limiting step
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Fuel cell performance and open questions
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PtNi/Pd has higher open cir-
cuit voltage, similar perfor-
mance to Pt/Pd.

Why is ORR improved with bimetallic cat-
alyst?

• Pt electronic structure modified

• Pt catalyst geometric structure
modified

• Static oxygen adsorbates inhibited

• Overpotential reduced

Using XAS to study the catalyst nanopar-
ticles can help answer the first three ques-
tions
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Pt/C and PtNi/C comparison
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Energy (eV)

0.00

0.02

550 mV

750 mV

900 mV

0.00

0.02

∆
µ

(E
)

11550 11575
0.0

0.5

1.0

µ
(E

)

At highest potential,
all catalysts are metal-
lic and the Pt L3

XANES shows signif-
icant difference be-
tween the Pt and PtNi
catalysts

Delta XANES shows a
supression of Pt oxida-
tion in the PtNi cat-
alyst as a function of
applied potential

Q. Jia et al, “In Situ XAFS studies of the oxygen reduction reaction on carbon supported Pt and PtNi(1:1) catalysts”, J. Phys.
Conf. Series 190, 012157 (2009).
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PtNi structural model

Attempt to get global information about the oxygen

Fit all potentials with same metal core parameters for
each catalyst

Simultaneous fit of Pt and Ni edges in PtNi/C with con-
straint on Pt-Ni distance

Fit in k, k2, and k3 weighting simultaneously

Apply M-O path constraints

• length common across potentials

• σ2 fixed to 0.01

• Pt-O in PtNi/C at all potentials are refined with a
common occupation #
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Example fits
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Pt in Pt/C

Pt in PtNi/C

Ni in PtNi/C
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Pt-O

Fits out to 3.5
Å in R-space
and back Fourier
Transforms

The Pt catalyst
shows a larger oxy-
gen path contribu-
tion than the PtNi
catalyst

The Ni EXAFS is
dominated by the
presence of a sig-
nificant Ni-O bond

“In Situ XAFS studies of the oxygen reduction reaction on carbon supported Pt and PtNi(1:1) catalysts”, Q. Jia, E.A. Lewis,
E.S. Smotkin, and C.U. Segre, J. Phys. Conf. Series 190, 012157 (2009).
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Fit results

Pt/C PtNi/C

Pt Ni

NPt 8.7± 0.2 NPt 6.1± 0.3 NNi 3.7± 0.2

RPt-Pt 2.749± 0.001 RPt-Pt 2.692± 0.003 RNi-Ni 2.572± 0.006

NNi 3.4± 0.1 NPt 8.9± 0.5

RPt-Ni 2.635± 0.004

NTotal 9.5± 0.4 NTotal 12.6± 0.7

RPt-O 2.02± 0.01 RPt-O 2.09± 0.03 RNi-O 1.90± 0.01

Note the Pt-Pt and Pt-O bond lengths as well as total metal near
neighbors

“In Situ XAFS studies of the oxygen reduction reaction on carbon supported Pt and PtNi(1:1) catalysts”, Q. Jia, E.A. Lewis,
E.S. Smotkin, and C.U. Segre, J. Phys. Conf. Series 190, 012157 (2009).
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Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance
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Low V peaks are H+ stripping

Dip at ∼0.5 V is oxygen stripping

Ru shifts potential on all peaks

With Methanol

Continual current growth is due to
methanol oxidation

Ru improves current by removing
the CO which blocks active sites

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt
nanoparticle electrocatalyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904
(2013).
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Ru EXAFS
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0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+175 mV

+375 mV

+575 mV

+675 mV

With methanol

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+375 mV

+675 mV

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt
nanoparticle electrocatalyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem. C 117, 18904
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Fit example: -225 mV without methanol
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Fit example: 675 mV without methanol
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Fit example: 675 mV with methanol
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Bi-functional mechanism

“In situ Ru K-Edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru
on Pt nanoparticle electrocatalyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and C.U. Segre, J. Phys. Chem.
C 117, 18904 (2013).
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Today’s outline - March 31, 2020 (part B)

• Reversibility in tin anode battery materials

1. Modeling lithated Sn EXAFS

2. The Sn lithiation process

3. Fully reversible lithiation of Sn phosphide
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Initial in situ Sn-based anode EXAFS
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three Sn-Li paths at “center of mass” locations
“In situ XAS study of the capacity fading mechanism in hybrid Sn3O2(OH)2/graphite battery anode nanomaterials,” C.J.
Pelliccione, E.V. Timofeeva, and C.U. Segre, Chem. Mater. 27, 574-580 (2015).
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Sn nanoparticles – EXAFS versus potential
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“Potential-resolved in situ x-ray absorption spectroscopy study of Sn and SnO2 nanomaterial anodes for lithium-ion batteries,”
C.J. Pelliccione, E.V. Timofeeva, and C.U. Segre, J. Phys. Chem. C 120, 5331-5339 (2016).
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The Sn lithiation process
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Sn4P3/graphite composite anode

Sn4P3 synthesized by high energy ball
milling, then ball milled again with
graphite to obtain composite

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Sp
ec

ifi
c 

C
ap

ac
ity

 (m
Ah

 g
-1
)

Cycle Number

Sn4P3/graphite composite
shows stable, reversible
capacity of 610 mAh/g for
100 cycles at C/2 compared
to rapidly fading pure Sn4P3

material.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding,
Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 8, 1702134 (2018).
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In situ EXAFS of Sn4P3/graphite
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Results for in situ coin cell are close to the capacity of the unmodified cell
at C/4, indicating good reversibility by the 3rd cycle.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding,
Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Third cycle comparison

By the third lithiation and third delithiation, the difference between pure
Sn4P3 and the Sn4P3/graphite composite is clear.
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Even at the 100th delithiation, the Sn4P3/graphite composite measured ex
situ is showing the same features as at the 3rd cycle.

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding,
Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Example fits

Fit EXAFS for bond lengths
and coordination numbers
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The Sn-O peak at OCV is
due to ball milling, which in-
troduces oxygen.
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At the 3rd delithiation, the
Sn-P path reappears but at a
shorter distance, in an amor-
phous SnPx phase.
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Third cycle dynamic snapshot
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“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries,” Y. Ding,
Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 8, 1702134 (2018).
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Today’s outline - March 31, 2020 (part C)

• Clustering in oxide chromophores

1. YMn1−x InxO3

2. YMn1−xGaxO3
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Chromophores based on YInO3

Base compound is white, dopant gives intense colors
The Mn variant has commercial promise
Hexagonal structure with YO6 octahedra and InO5 trigonal bipyramids

J. Li, S. Lorger, J.K. Stalick, A.W. Sleight, and M.A. Subramanian, Inorg. Chem. 55, 9798–9804 (2016).
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YMn1−x InxO3 solid solution

A.E. Smith, et al., J. Am. Chem. Soc. 131, 17084-
17086 (2009).

Color varies from bright blue to nearly black with optical absorption
reflecting the same variation

Diffraction patterns show a continuous shift in peak position which is
typical of uniform solid solutions
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YMn1−x InxO3 refinements

All samples are single
phase

Lattice parameters vary
linearly according to Veg-
ard’s law

How do the local environ-
ments of the manganese
and indium vary?

Hypothesis: Smooth vari-
ation in bond distances &
near neighbors

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).
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YMn1−x InxO3 x-ray absorption spectroscopy

Mn

The Mn is in the +3 state
throughout the series and
shows a single pre-edge peak

The Mn K-edge shows dis-
tinct isosbestic points indi-
cating that all the samples
are mixtures of two different
Mn local environments

Similar isosbestic points ap-
pear at the In K-edge

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).
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Bimodal Mn local environment fits XANES

Fit endpoints with two different Mn local environments

then fit all spectra
with a linear combination of the two

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).

C. Segre (IIT) PHYS 570 - Spring 2020 March 31, 2020 38 / 47



Bimodal Mn local environment fits XANES

Fit endpoints with two different Mn local environments then fit all spectra
with a linear combination of the two
”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).

C. Segre (IIT) PHYS 570 - Spring 2020 March 31, 2020 38 / 47



Detailed modeling of endpoint compositions

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).
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Endpoint EXAFS fits describe all samples

The EXAFS of both Mn and In
edges of all samples can be fit by
a linear combination of the two
endpoint models with only one
variable parameter

Conclude that Mn and In have
segregated into Mn-rich and In-
rich domains which must be
nanometer sized

This must mean that the color is
due to dilute Mn in the In-rich
environment and that the color
must be invariant across the se-
ries

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).
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YMn1−x InxO3 optical properties

With the XAS results in mind, let’s revisit the optical absorption results

The centroid of the absorption band remains constant and the
concentration only affects the width of the band

The Raman scattering data are also consistent with the XAS results

”Evolution of the local structure within chromophoric Mn-O5 trigonal bipyramids in YMn1−x InxO3 with composition,” S.
Mukherjee, H. Ganegoda, A. Kumar, S. Pal, C.U. Segre, and D.D. Sarma, Inorg. Chem. 57, 9012–9019 (2018).
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Purple YMn1−xGaxO3 solid solution

YGaO3 has same hexagonal struc-
ture

Doping with Mn gives brilliant pur-
ple colors

Is Mn in a bimodal local environ-
ment?

YMn1−xGaxO3 is more challeng-
ing, requiring careful control of
temperature and time to avoid gar-
net impurity phase
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YMn1−xGaxO3 diffraction data
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YMn1−xGaxO3 XANES
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YMn1−xGaxO3 EXAFS
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Where do we go from here?

YMn1−xGaxO3 needs additional work to obtain good
crystalline samples across the composition range

Bimodal environments seem to be a general property
of the two systems studied so far

Will this bimodal environment be present in all sys-
tems based on this hexagonal structure? In other
chromophore systems?
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