Today's Outline - March 24, 2020 (part A)

Today's Outline - March 24, 2020 (part A)

- Standing wave experiments

Today's Outline - March 24, 2020 (part A)

- Standing wave experiments

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 02, 2020

Standing wave experiments

Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

Standing wave experiments

Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve

As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons

Standing wave experiments

Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve
As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons
An electron or flourescence spectrometer is used to detect the signals and determine bond distances

Standing wave experiments

Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted in space by traversing the rocking curve
As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons
An electron or flourescence spectrometer is used to detect the signals and determine bond distances

This can be done most effectively by tuning the energy through the Darwin width of the rocking curve

Standing wave experiments

Once a standing wave is established by diffraction from a perfect crystal, the nodes can be shifted
 in space by traversing the rocking curve
As the antinodes of the standing wave sweep past atoms in the crystal or on the surface, they will emit photoelectrons
An electron or flourescence spectrometer is used to detect the signals and determine bond distances

This can be done most effectively by tuning the energy through the Darwin width of the rocking curve

A high resolution monochromator is required for this kind of experiment

Beam line ID32 @ ESRF

Structure of Sn on $\mathrm{Ge}(111)$

The low temperature 3×3 structure (dashed line) is well known but the room temperature $\sqrt{3} \times \sqrt{3}$ surface structure (solid line) is unresolved

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

The low temperature 3×3 structure (dashed line) is well known but the room temperature $\sqrt{3} \times \sqrt{3}$ surface structure (solid line) is unresolved A sub-monolayer of Sn is evaporated on a clean $\mathrm{Ge}(111)$ surface and studied using x-ray standing wave stimulated photoelectron spectroscopy

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

The low temperature 3×3 structure (dashed line) is well known but the room temperature $\sqrt{3} \times \sqrt{3}$ surface structure (solid line) is unresolved
A sub-monolayer of Sn is evaporated on a clean $\mathrm{Ge}(111)$ surface and studied using x-ray standing wave stimulated photoelectron spectroscopy

Below 0.2 ML , the well known 2×2 structure is measured as a reference

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

The low temperature 3×3 structure (dashed line) is well known but the room temperature $\sqrt{3} \times \sqrt{3}$ surface structure (solid line) is unresolved

A sub-monolayer of Sn is evaporated on a clean $\mathrm{Ge}(111)$ surface and studied using x-ray standing wave stimulated photoelectron spectroscopy

Below 0.2 ML, the well known 2×2 structure is measured as a reference

Above 0.2 ML , the $\sqrt{3} \times \sqrt{3}$ structure appears and then dominates
"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

[^0]
Structure of Sn on $\mathrm{Ge}(111)$

> With an incident energy of 2.5 keV , the 2×2 and $\sqrt{3} \times \sqrt{3}$ structures are measured in an off-Bragg condition

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

With an incident energy of 2.5 keV , the 2×2 and $\sqrt{3} \times \sqrt{3}$ structures are measured in an off-Bragg condition

The lines for both the $\operatorname{Sn} 3 d_{5 / 2}$ and $4 d$ peaks in the 2×2 phase are sharp, indicating a single chemical state
"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

With an incident energy of 2.5 keV , the 2×2 and $\sqrt{3} \times \sqrt{3}$ structures are measured in an off-Bragg condition

The lines for both the $\mathrm{Sn} 3 d_{5 / 2}$ and $4 d$ peaks in the 2×2 phase are sharp, indicating a single chemical state

The $\sqrt{3} \times \sqrt{3}$ structure shows two distinct chemical shifts, with the majority component, I_{1}, having a slightly lower binding energy than the minority component, I_{2}

[^1]
Structure of Sn on $\mathrm{Ge}(111)$

By varying the energy with a resolution of 500 meV , the standing wave is swept through the Sn layer

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

By varying the energy with a resolution of 500 meV , the standing wave is swept through the Sn layer

As the energy is scanned around the center of the $\mathrm{Ge}(111)$ reflection, the fits using a mixture of Gaussian and Lorentzian line shapes show that the relative intensity, I_{1} / I_{2} varies

[^2]
Structure of Sn on $\mathrm{Ge}(111)$

By varying the energy with a resolution of 500 meV , the standing wave is swept through the Sn layer

As the energy is scanned around the center of the $\mathrm{Ge}(111)$ reflection, the fits using a mixture of Gaussian and Lorentzian line shapes show that the relative intensity, I_{1} / I_{2} varies

At $\Delta E_{\gamma}=0.45 \mathrm{eV}$, the I_{1} / I_{2} ratio almost completely inverts, showing that the two atom populations are at different heights above the surface

[^3]
Structure of Sn on $\mathrm{Ge}(111)$

The normalized peak intensities can be fitted to extract the relative positions of the two populations of atoms and their atomic ratio

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

The normalized peak intensities can be fitted to extract the relative positions of the two populations of atoms and their atomic ratio

Population 1 is two times larger than population 2 and is located a height $\Delta h=0.23 \AA$ further from the $\mathrm{Ge}(111)$ surface

"Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

Structure of Sn on $\mathrm{Ge}(111)$

The normalized peak intensities can be fitted to extract the relative positions of the two populations of atoms and their atomic ratio

Population 1 is two times larger than population 2 and is located a height $\Delta h=0.23 \AA$ further from the $\mathrm{Ge}(111)$ surface

Population 1 also has a lower binding energy, demonstrating that the binding energy is directly correlated to the height from the surface

[^4]
Today's Outline - March 24, 2020 (part B)

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections
- Dumond diagrams

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections
- Dumond diagrams
- Monochromators

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections
- Dumond diagrams
- Monochromators

So far, the dynamical diffraction theory has focused on the symmetric Bragg geometry where the crystal surface aligns with the diffracting planes

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections
- Dumond diagrams
- Monochromators

So far, the dynamical diffraction theory has focused on the symmetric Bragg geometry where the crystal surface aligns with the diffracting planes

Practically, it is nearly impossible to obtain this perfect alignment, therefore it is important to understand the consequences of what is called asymmetric Bragg geometry

Today's Outline - March 24, 2020 (part B)

- Asymmetric reflections
- Dumond diagrams
- Monochromators

So far, the dynamical diffraction theory has focused on the symmetric Bragg geometry where the crystal surface aligns with the diffracting planes

Practically, it is nearly impossible to obtain this perfect alignment, therefore it is important to understand the consequences of what is called asymmetric Bragg geometry

Recall that for a perfect crystal in symmetric Bragg geometry, the angular acceptance of the Darwin curve is

$$
\omega_{D}=\delta \theta_{D}=\zeta_{D} \tan \theta_{B r a g g}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
b=\frac{\sin \theta_{i}}{\sin \theta_{e}}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
b=\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem,
 phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\delta \theta_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right)
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

$$
\delta \theta_{i} H_{i}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}
$$

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right) H_{e}
$$

Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of the crystal it is parametrized by the asymmetry angle, α, with

$$
0<\alpha<\theta_{\text {Bragg }}
$$

this leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, phase space is invariant so the divergence of the beam, $\delta \theta$, must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right) H_{e}=\delta \theta_{e} H_{e}
$$

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals.

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle.
$\mathrm{Si}(111) \mathrm{b}=4.3-\mathrm{Si}(111) \mathrm{b}=0.23$

output divergence on left, input divergence on right

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle.
$\mathrm{Si}(111) \mathrm{b}=4.3-\mathrm{Si}(111) \mathrm{b}=0.23$

$\operatorname{Si}(111) \mathrm{b}=0.23-\mathrm{Si}(111) \mathrm{b}=4.3$

output divergence on left, input divergence on right

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle. When one asymmetry is much higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and wavelength.

Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and wavelength. Here Darwin width is ignored.

Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and wavelength. Here Darwin width is ignored.

for small angular deviations $\sin \theta$ is linear with a slope of $\cos \theta_{B}$

Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and wavelength. Here Darwin width is ignored.

for small angular deviations $\sin \theta$ is linear with a slope of $\cos \theta_{B}$
non-zero diffracted beam only for points on the line

Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and wavelength. Here Darwin width is ignored.

for small angular deviations $\sin \theta$ is linear with a slope of $\cos \theta_{B}$
non-zero diffracted beam only for points on the line
a horizontal line transfers input to output beam characteristics

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input beam is perfectly collimated, so is output (vertical black line).

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input beam is perfectly collimated, so is output (vertical black line).

the bandwidth of a collimated (no angular divergence) beam denoted by the black line can be accepted by the input function of the crystal

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input beam is perfectly collimated, so is output (vertical black line).

the bandwidth of a collimated (no angular divergence) beam denoted by the black line can be accepted by the input function of the crystal
this input bandwidth is transferred to a similar output bandwidth which is also collimated

Dumond diagram: asymmetric Bragg

For an asymmetric crystal, the output beam is no longer collimated but acquires a divergence α_{e}

Dumond diagram: asymmetric Bragg

For an asymmetric crystal, the output beam is no longer collimated but acquires a divergence α_{e}

a perfectly collimated input beam transfers to an output beam that has an angular divergence which depends on the asymmetry factor b

Dumond diagram: asymmetric Bragg

For an asymmetric crystal, the output beam is no longer collimated but acquires a divergence α_{e}

a perfectly collimated input beam transfers to an output beam that has an angular divergence which depends on the asymmetry factor b
this is in addition to a compression (in this case) of the beam height (Liouville's theorem!)

Double crystal monochromator: Non-dispersive

Double crystal monochromator: Non-dispersive

Double crystal monochromator: Non-dispersive

the transfer functions of the the two crystals match and full bandwith and divergence is preserved

Double crystal monochromators: Dispersive

Double crystal monochromators: Dispersive

Double crystal monochromators: Dispersive

the transfer function matches only in small band that varies with angle of the second crystal

Asymmetric monochromator at ELETTRA

"High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA," S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron Rad. 5, 1215-1221 (1998).

Asymmetric monochromator at ELETTRA

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2° grazing incidence in order to spread the heat load
"High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA," S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron Rad. 5, 1215-1221 (1998).

Asymmetric monochromator at ELETTRA

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2° grazing incidence in order to spread the heat load

The three crystals are set for single energies of $5.6,8.0$, and 16 keV with a vertical displacement of 1.5 m and asymmetry parameter, b, of 0.053 , 0.078 , and 0.17 , respectively
"High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA," S. Bernstorff, H. Amentisch, and P. Laggner, J. Synchrotron Rad. 5, 1215-1221 (1998).

Today's Outline - March 24, 2020 (part C)

Today's Outline - March 24, 2020 (part C)

- Dirac bra-ket notation

Today's Outline - March 24, 2020 (part C)

- Dirac bra-ket notation
- Quantum formalism

Today's Outline - March 24, 2020 (part C)

- Dirac bra-ket notation
- Quantum formalism

Quantum mechanics is simply a wave theory where the wave function describes the entire system and can be used to compute all the measureable properties of the system

Today's Outline - March 24, 2020 (part C)

- Dirac bra-ket notation
- Quantum formalism

Quantum mechanics is simply a wave theory where the wave function describes the entire system and can be used to compute all the measureable properties of the system

Quantum mechanics uses some simplifying notation and has a one-to-one correspondence with linear algebra and matrix methods

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.

integral
bra-ket

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.
integral bra-ket
bra
$\psi^{*}(x) \quad\langle\psi|$
complex conjugate is implicit

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.
integral bra-ket
bra
ket

$$
\begin{gather*}
\psi^{*}(x) \\
\psi(x)
\end{gather*}
$$

complex conjugate is implicit

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.
integral bra-ket

bra	$\psi^{*}(x)$	$\langle\psi\|$
ket	$\psi(x)$	$\|\psi\rangle$
normalization	$\int \psi^{*}(x) \psi(x) d x=1$	$\langle\psi \mid \psi\rangle=1$

Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is commonly used. We will see it in detail in Chapter 3, however one part of this formalism is a compact notation which simplifies writing expectation value integrals. We will start using this "bra-ket" notation immediately.
integral bra-ket

bra	$\psi^{*}(x)$	$\langle\psi\|$	complex conjugate is implicit
ket	$\psi(x)$	$\|\psi\rangle$	
normalization	$\int \psi^{*}(x) \psi(x) d x=1$	$\langle\psi \mid \psi\rangle=1$	
expectation	$\int \psi^{*} Q \psi d x$	$\langle\psi \mid Q \psi\rangle$	operator is applied to the right

Similarity to linear algebra

Wave functions are mathematically identical to $|\alpha\rangle$ vectors in linear algebra.

Similarity to linear algebra

Wave functions are mathematically identical to vectors in linear algebra.

$$
|\alpha\rangle \rightarrow \mathrm{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Similarity to linear algebra

Wave functions are mathematically identical to vectors in linear algebra.

$$
|\alpha\rangle \rightarrow \mathrm{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Wave functions have inner products.

$$
\langle\alpha \mid \beta\rangle
$$

Similarity to linear algebra

Wave functions are mathematically identical to vectors in linear algebra.

$$
|\alpha\rangle \rightarrow \mathrm{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Wave functions have inner products.

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\cdots+a_{N}^{*} b_{N}
$$

Similarity to linear algebra

Wave functions are mathematically identical to vectors in linear algebra.

$$
|\alpha\rangle \rightarrow \mathrm{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Wave functions have inner products.

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\cdots+a_{N}^{*} b_{N}
$$

Operators act on wave functions as linear transformations.
$T|\alpha\rangle$

Similarity to linear algebra

Wave functions are mathematically identical to vectors in linear algebra.

$$
|\alpha\rangle \rightarrow \mathrm{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Wave functions have inner products.

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\cdots+a_{N}^{*} b_{N}
$$

Operators act on wave functions as linear transformations.

$$
T|\alpha\rangle \rightarrow \mathrm{Ta}=\left(\begin{array}{ccc}
t_{11} & \cdots & t_{1 N} \\
t_{21} & \cdots & t_{2 N} \\
\vdots & & \vdots \\
t_{N 1} & \cdots & t_{N N}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right)
$$

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative

$$
|\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle
$$

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative

$$
|\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle
$$

addition is associative

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative

$$
|\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle
$$

addition is associative

$$
|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle
$$

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative
addition is associative

$$
|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle
$$

the null vector exists

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative
addition is associative

$$
|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle
$$

the null vector exists

$$
|\alpha\rangle+|0\rangle=|\alpha\rangle
$$

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative
addition is associative

$$
|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle
$$

the null vector exists

$$
|\alpha\rangle+|0\rangle=|\alpha\rangle
$$

every vector has an inverse

Vector properties: addition

$$
|\alpha\rangle+|\beta\rangle=|\gamma\rangle
$$

addition is commutative
addition is associative

$$
|\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle
$$

$$
|\alpha\rangle+(|\beta\rangle+|\gamma\rangle)=(|\alpha\rangle+|\beta\rangle)+|\gamma\rangle
$$

the null vector exists

$$
|\alpha\rangle+|0\rangle=|\alpha\rangle
$$

every vector has an inverse

$$
|\alpha\rangle+|-\alpha\rangle=|0\rangle
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
a(|\alpha\rangle+|\beta\rangle)=a|\alpha\rangle+a|\beta\rangle
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

scalar multiplication is associative

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

scalar multiplication is associative

$$
a(b|\alpha\rangle)=(a b)|\alpha\rangle
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

scalar multiplication is associative

$$
\begin{aligned}
a(b|\alpha\rangle) & =(a b)|\alpha\rangle \\
0|\alpha\rangle & =|0\rangle
\end{aligned}
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

scalar multiplication is associative

$$
\begin{aligned}
a(b|\alpha\rangle) & =(a b)|\alpha\rangle \\
0|\alpha\rangle & =|0\rangle \\
1|\alpha\rangle & =|\alpha\rangle
\end{aligned}
$$

Vector properties: scalar multiplication

$$
a|\alpha\rangle=|\gamma\rangle
$$

scalar multiplication is distributive

$$
\begin{aligned}
a(|\alpha\rangle+|\beta\rangle) & =a|\alpha\rangle+a|\beta\rangle \\
(a+b)|\alpha\rangle & =a|\alpha\rangle+b|\alpha\rangle
\end{aligned}
$$

scalar multiplication is associative

$$
\begin{aligned}
a(b|\alpha\rangle) & =(a b)|\alpha\rangle \\
0|\alpha\rangle & =|0\rangle \\
1|\alpha\rangle & =|\alpha\rangle \\
|-\alpha\rangle & =(-1)|\alpha\rangle=-|\alpha\rangle
\end{aligned}
$$

Today's Outline - March 24, 2020 (part D)

Today's Outline - March 24, 2020 (part D)

- Absorption cross-sections

Today's Outline - March 24, 2020 (part D)

- Absorption cross-sections
- Photoelectric absorption

Today's Outline - March 24, 2020 (part D)

- Absorption cross-sections
- Photoelectric absorption

So far we have only dealt with elastic scattering and this can be done semi-classically

Today's Outline - March 24, 2020 (part D)

- Absorption cross-sections
- Photoelectric absorption

So far we have only dealt with elastic scattering and this can be done semi-classically

Now we will treat absorption and inelastic scattering of photons, which must be treated using quantum mechanics

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Characteristic absorption jumps depend on the element

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Characteristic absorption jumps depend on the element

These quantities vary significantly over many decades but can easily put on an equal footing.

Scaled absorption

$$
T=\frac{l}{l_{0}}=e^{-\mu z}
$$

Scaled absorption

$$
\begin{aligned}
& T=\frac{l}{l_{0}}=e^{-\mu z} \\
& \mu=\frac{\rho_{m} N_{A}}{M} \sigma_{a}
\end{aligned}
$$

Scaled absorption

$$
\begin{aligned}
T & =\frac{l}{I_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

Scaled absorption

$$
\begin{aligned}
T & =\frac{l}{l_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

scale σ_{a} for different elements by E^{3} / Z^{4} and plot together

Scaled absorption

$$
\begin{aligned}
T & =\frac{I}{I_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

scale σ_{a} for different elements by E^{3} / Z^{4} and plot together
remarkably, all values lie on a common curve above the K edge and between the L and K edges and below the L edge

Absorption edge nomenclature

The states are labeled according to the principal, orbital angular momentum, and total angular momentum quantum numbers, n, l, and j, respectively

Absorption edge nomenclature

The states are labeled according to the principal, orbital angular momentum, and total angular momentum quantum numbers, n, l, and j, respectively

The absorption edges are labeled according to the initial principal quantum number of the photoelectron:

Absorption edge nomenclature

The states are labeled according to the principal, orbital angular momentum, and total angular momentum quantum numbers, n, l, and j, respectively

The absorption edges are labeled according to the initial principal quantum number of the photoelectron:

$$
\begin{aligned}
& n=1 \longrightarrow K \\
& n=2 \longrightarrow L \\
& n=3 \longrightarrow M
\end{aligned}
$$

Absorption edge nomenclature

The states are labeled according to the principal, orbital angular momentum, and total angular momentum quantum numbers, n, l, and j, respectively

The absorption edges are labeled according to the initial principal quantum number of the photoelectron:

$$
\begin{aligned}
& n=1 \longrightarrow K \\
& n=2 \longrightarrow L \\
& n=3 \longrightarrow M
\end{aligned}
$$

Roman numerals increase from low to high values of I and j

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{i f}$ between the initial, $\langle i|$, and final, $|f\rangle$, states is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ between the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is ex-

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$ pressed in terms of the electromagnetic vector potential

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

The first term gives absorption

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

The first term gives absorption while the second produces Thomson scattering so we take only the first into consideration now.

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)

$$
|i\rangle=|1\rangle_{\gamma}|0\rangle_{e}
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Thus

$$
M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[e\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a e^{i \vec{k} \cdot \vec{r}}+(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger} e^{-i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}\right]
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Thus

$$
M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[e\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a e^{i \vec{k} \cdot \vec{r}}+(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger} e^{-i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}\right]
$$

The calculation is simplified if the interaction Hamiltonian is applied to the left since the final state has only a free electron and no photon

Free electron approximation

The free electron state is an eigenfunction of the electron momentum operator

Free electron approximation

$$
e^{\langle 1| \vec{p}=(\hbar \vec{q})_{e}<1 \mid}
$$

The free electron state is an eigenfunction of the electron momentum operator

Free electron approximation

$$
e^{\langle } 1 \mid \vec{p}=(\hbar \vec{q})_{e}\langle 1|
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon

Free electron approximation

$$
\begin{aligned}
& e^{\langle 1| \vec{p}}=(\hbar \vec{q})_{e}\langle 1| \\
& \gamma_{\langle }\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon

Free electron approximation

$$
\begin{aligned}
& e^{\langle 1| \vec{p}}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

Free electron approximation

$$
\begin{aligned}
e\langle 1| \vec{p} & =(\hbar \vec{q})_{e}\langle 1| \\
{ }_{\gamma}\langle n| a & =(\sqrt{n+1})_{\gamma}\langle n+1| \\
{ }_{\gamma}\langle n| a^{\dagger} & =(\sqrt{n})_{\gamma}\langle n-1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

Free electron approximation

$$
\begin{aligned}
e^{\langle }\langle 1| \vec{p} & =(\hbar \vec{q})_{e}\langle 1| \\
{ }_{\gamma}\langle n| a & =(\sqrt{n+1})_{\gamma}\langle n+1| \\
{ }_{\gamma}\langle n| a^{\dagger} & =(\sqrt{n})_{\gamma}\langle n-1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

$$
e^{\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right.}
$$

Free electron approximation

$$
\begin{aligned}
e^{\langle }\langle 1| \vec{p} & =(\hbar \vec{q})_{e}\langle 1| \\
{ }_{\gamma}\langle n| a & =(\sqrt{n+1})_{\gamma}\langle n+1| \\
{ }_{\gamma}\langle n| a^{\dagger} & =(\sqrt{n})_{\gamma}\langle n-1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

$$
\begin{aligned}
e^{\langle }\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a\right. & =\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right. \\
e^{\langle }\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}\right. & =0
\end{aligned}
$$

Free electron approximation

$$
\begin{aligned}
& { }_{e}\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1|
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator

The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

$$
\begin{aligned}
e^{\langle }\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a\right. & =\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right. \\
e^{\langle }\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}\right. & =0
\end{aligned}
$$

$$
M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right]
$$

Free electron approximation

$$
\begin{aligned}
& e^{\langle }\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1| \\
& { }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right. \\
& e^{\langle }\left\langle 1{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}=0\right. \\
& M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right] \\
& =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon})_{e}\langle 1| e^{i \vec{k} \cdot \vec{r}}|0\rangle_{e}
\end{aligned}
$$

Free electron approximation

$$
\begin{aligned}
& { }_{e}\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1}){ }_{\gamma}\langle n+1| \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n}){ }_{\gamma}\langle n-1| \\
& \text { function of the electron momentum } \\
& \text { operator } \\
& \text { The annihilation operator applied } \\
& \text { to the left creates a photon while } \\
& \text { the creation operator annihilates a } \\
& \text { photon when applied to the left. } \\
& e^{\langle }\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right. \\
& e^{\langle 1} \mid{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}=0 \\
& M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right] \\
& =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon})_{e}\langle 1| e^{i \vec{k} \cdot \vec{r}}|0\rangle_{e}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}
\end{aligned}
$$

The free electron state is an eigen-

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}
$$

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

The initial electron wavefunction is simply that of a $1 s$ atomic state

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r})
$$

The initial electron wavefunction is simply that of a 1 s atomic state

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r})
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

The integral thus becomes

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

$$
\phi(\vec{Q})=\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r}
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

The integral thus becomes

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}}^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is

$$
\phi(\vec{Q})=\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{F}} \psi_{1 s}(\vec{r}) d \vec{r}
$$ simply that of a $1 s$ atomic state while the final state is approximated as a plane wave

$$
=\sqrt{\frac{1}{V}} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}
$$

The integral thus becomes

Photoelectron integral

$$
\begin{aligned}
M_{i f} & =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q}) \\
\psi_{i} & =\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}} \quad \begin{array}{ll}
\text { The initial electron wavefunction is } \\
\text { simply that of a 1s atomic state } \\
\text { while the final state is approxi- } \\
\text { mated as a plane wave }
\end{array} \\
\phi(\vec{Q}) & =\sqrt{\frac{1}{V} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r}} \quad \begin{array}{ll}
\text { The integral thus becomes }
\end{array} \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}} \quad \begin{array}{ll}
\text { Ther }
\end{array} \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}} \quad
\end{aligned}
$$

Photoelectron integral

$$
\begin{array}{rlrl}
M_{i f} & =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q}) \\
\psi_{i} & =\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}} & \begin{array}{l}
\text { The initial electron wavefunction is } \\
\text { simply that of a 1s atomic state } \\
\text { while the final state is approxi- } \\
\text { mated as a plane wave }
\end{array} \\
\phi(\vec{Q}) & =\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r} & \begin{array}{l}
\text { The integral thus becomes }
\end{array} \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}} \quad \begin{array}{ll}
\text { which is the Fourier transform of } \\
\text { the initial state 1s electron wave } \\
\text { function }
\end{array} &
\end{array}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

where the integral I_{3} is given by

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

where the integral I_{3} is given by

$$
I_{3}=\int \phi^{2}(\vec{Q}) q^{2} \sin ^{2} \theta \cos ^{2} \varphi \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \phi
$$

Calculated cross section

Calculated cross section

Calculated cross section

[^0]: "Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

[^1]: "Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

[^2]: "Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

[^3]: "Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

[^4]: "Chemically resolved structure of the $\mathrm{Sn} / \mathrm{Ge}(111)$ surface," T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys. Rev. Lett. 96, 046103 (2006).

