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Standing wave experiments

Once a standing wave is established by diffraction
from a perfect crystal, the nodes can be shifted
in space by traversing the rocking curve

As the antinodes of the standing wave sweep past
atoms in the crystal or on the surface, they will
emit photoelectrons

An electron or flourescence spectrometer is used
to detect the signals and determine bond dis-
tances

This can be done most effectively by tuning the
energy through the Darwin width of the rocking
curve

A high resolution monochromator is required for
this kind of experiment
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Beam line ID32 @ ESRF
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Structure of Sn on Ge(111)

The low temperature 3×3 structure
(dashed line) is well known but the
room temperature

√
3×
√

3 surface
structure (solid line) is unresolved

A sub-monolayer of Sn is evap-
orated on a clean Ge(111) sur-
face and studied using x-ray stand-
ing wave stimulated photoelectron
spectroscopy

Below 0.2 ML, the well known 2×2
structure is measured as a reference

Above 0.2 ML, the
√

3×
√

3 struc-
ture appears and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 4 / 36



Structure of Sn on Ge(111)

The low temperature 3×3 structure
(dashed line) is well known but the
room temperature

√
3×
√

3 surface
structure (solid line) is unresolved

A sub-monolayer of Sn is evap-
orated on a clean Ge(111) sur-
face and studied using x-ray stand-
ing wave stimulated photoelectron
spectroscopy

Below 0.2 ML, the well known 2×2
structure is measured as a reference

Above 0.2 ML, the
√

3×
√

3 struc-
ture appears and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 4 / 36



Structure of Sn on Ge(111)

The low temperature 3×3 structure
(dashed line) is well known but the
room temperature

√
3×
√

3 surface
structure (solid line) is unresolved

A sub-monolayer of Sn is evap-
orated on a clean Ge(111) sur-
face and studied using x-ray stand-
ing wave stimulated photoelectron
spectroscopy

Below 0.2 ML, the well known 2×2
structure is measured as a reference

Above 0.2 ML, the
√

3×
√

3 struc-
ture appears and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 4 / 36



Structure of Sn on Ge(111)

The low temperature 3×3 structure
(dashed line) is well known but the
room temperature

√
3×
√

3 surface
structure (solid line) is unresolved

A sub-monolayer of Sn is evap-
orated on a clean Ge(111) sur-
face and studied using x-ray stand-
ing wave stimulated photoelectron
spectroscopy

Below 0.2 ML, the well known 2×2
structure is measured as a reference

Above 0.2 ML, the
√

3×
√

3 struc-
ture appears and then dominates

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 4 / 36



Structure of Sn on Ge(111)
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Structure of Sn on Ge(111)

With an incident energy of 2.5 keV,
the 2× 2 and

√
3×
√

3 structures are
measured in an off-Bragg condition

The lines for both the Sn 3d5/2 and
4d peaks in the 2×2 phase are sharp,
indicating a single chemical state

The
√

3×
√

3 structure shows two dis-
tinct chemical shifts, with the major-
ity component, I1, having a slightly
lower binding energy than the minor-
ity component, I2

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

By varying the energy with a resolu-
tion of 500 meV, the standing wave is
swept through the Sn layer

As the energy is scanned around the
center of the Ge(111) reflection, the
fits using a mixture of Gaussian and
Lorentzian line shapes show that the
relative intensity, I1/I2 varies

At ∆Eγ = 0.45 eV, the I1/I2 ratio al-
most completely inverts, showing that
the two atom populations are at dif-
ferent heights above the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).
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Structure of Sn on Ge(111)

The normalized peak intensities can
be fitted to extract the relative posi-
tions of the two populations of atoms
and their atomic ratio

Population 1 is two times larger than
population 2 and is located a height
∆h = 0.23 Å further from the
Ge(111) surface

Population 1 also has a lower binding
energy, demonstrating that the bind-
ing energy is directly correlated to the
height from the surface

“Chemically resolved structure of the Sn/Ge(111) surface,” T.-L. Lee, S. Warren, B.C.C. Cowie, and J. Zengenhagen, Phys.
Rev. Lett. 96, 046103 (2006).
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Today’s Outline - March 24, 2020 (part B)

• Asymmetric reflections

• Dumond diagrams

• Monochromators

So far, the dynamical diffraction theory has focused on the symmetric
Bragg geometry where the crystal surface aligns with the diffracting planes

Practically, it is nearly impossible to obtain this perfect alignment,
therefore it is important to understand the consequences of what is called
asymmetric Bragg geometry

Recall that for a perfect crystal in symmetric Bragg geometry, the angular
acceptance of the Darwin curve is

ωD = δθD = ζD tan θBragg
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Asymmetric geometry

When the diffracting planes are not precisely aligned with the surface of
the crystal it is parametrized by the asymmetry angle, α, with

0 < α < θBragg

this leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

He =
Hi

b

according to Liouville’s theorem,
phase space is invariant so the di-
vergence of the beam, δθ, must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b

(ζD tan θ)

δθiHi

=
1√
b

(ζD tan θ)bHe =
√
b(ζD tan θ)He

= δθeHe
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Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals.

When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 12 / 36



Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle.

When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 12 / 36



Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle.

When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 12 / 36



Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

C. Segre (IIT) PHYS 570 - Spring 2020 March 24, 2020 12 / 36



Dumond diagram: no Darwin width

Transfer function of an optical element parametrized by angle and
wavelength.

Here Darwin width is ignored.
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for small angular de-
viations sin θ is lin-
ear with a slope of
cos θB

non-zero diffracted
beam only for points
on the line

a horizontal line
transfers input
to output beam
characteristics
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.

If input
beam is perfectly collimated, so is output (vertical black line).

0 0θi-θB θe-θB

 λ

2d

w0=sinθB ζD

the bandwidth of
a collimated (no
angular divergence)
beam denoted by
the black line can
be accepted by the
input function of
the crystal

this input band-
width is transferred
to a similar output
bandwidth which is
also collimated
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Dumond diagram: asymmetric Bragg

For an asymmetric crystal, the output beam is no longer collimated but
acquires a divergence αe
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w0
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a perfectly colli-
mated input beam
transfers to an
output beam that
has an angular
divergence which
depends on the
asymmetry factor b

this is in addition
to a compression (in
this case) of the
beam height (Liou-
ville’s theorem!)
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Double crystal monochromator: Non-dispersive

∆θin

the transfer functions of
the the two crystals
match and full bandwith
and divergence is pre-
served
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Double crystal monochromators: Dispersive

∆θin

the transfer function
matches only in small
band that varies with
angle of the second
crystal
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Asymmetric monochromator at ELETTRA

The SAXS beamline at ELETTRA has asymmetric cut crystals with 2◦

grazing incidence in order to spread the heat load

The three crystals are set for single energies of 5.6, 8.0, and 16 keV with a
vertical displacement of 1.5 m and asymmetry parameter, b, of 0.053,
0.078, and 0.17, respectively

“High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA,” S. Bernstorff, H.
Amentisch, and P. Laggner, J. Synchrotron Rad. 5, 1215-1221 (1998).
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Today’s Outline - March 24, 2020 (part C)

• Dirac bra-ket notation

• Quantum formalism

Quantum mechanics is simply a wave theory where the wave function
describes the entire system and can be used to compute all the
measureable properties of the system

Quantum mechanics uses some simplifying notation and has a one-to-one
correspondence with linear algebra and matrix methods
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Dirac bra-ket notation

Paul Dirac developed a formalism for quantum mechanics which is
commonly used. We will see it in detail in Chapter 3, however one part of
this formalism is a compact notation which simplifies writing expectation
value integrals. We will start using this “bra-ket” notation immediately.

integral bra-ket

bra ψ∗(x) 〈ψ| complex conjugate is
implicit

ket ψ(x) |ψ〉

normalization
∫
ψ∗(x)ψ(x)dx = 1 〈ψ |ψ〉 = 1

expectation
value

∫
ψ∗Qψdx 〈ψ |Q ψ〉 operator is applied

to the right
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Similarity to linear algebra

Wave functions are math-
ematically identical to
vectors in linear algebra.

Wave functions have in-
ner products.

Operators act on wave
functions as linear trans-
formations.

|α〉

→ a =


a1

a2
...
aN


〈α|β〉 = a∗1b1 + a∗2b2 + · · ·+ a∗NbN

T |α〉 → Ta =


t11 · · · t1N

t21 · · · t2N
...

...
tN1 · · · tNN




a1

a2
...
aN


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Vector properties: addition

|α〉+ |β〉 = |γ〉

addition is commutative

addition is associative

the null vector exists

every vector has an inverse

|α〉+ |β〉 = |β〉+ |α〉

|α〉+ (|β〉+ |γ〉) = (|α〉+ |β〉) + |γ〉

|α〉+ |0〉 = |α〉

|α〉+ | − α〉 = |0〉
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Vector properties: scalar multiplication

a|α〉 = |γ〉

scalar multiplication is distributive

scalar multiplication is associative

a(|α〉+ |β〉) = a|α〉+ a|β〉
(a + b)|α〉 = a|α〉+ b|α〉

a(b|α〉) = (ab)|α〉
0|α〉 = |0〉
1|α〉 = |α〉
| − α〉 = (−1)|α〉 = −|α〉
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Today’s Outline - March 24, 2020 (part D)

• Absorption cross-sections

• Photoelectric absorption

So far we have only dealt with elastic scattering and this can be done
semi-classically

Now we will treat absorption and inelastic scattering of photons, which
must be treated using quantum mechanics
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Total cross section

The total cross-section for
photon “absorption” in-
cludes elastic (or coher-
ent) scattering, Compton
(inelastic) scattering, and
photoelectric absorption.

Characteristic absorption
jumps depend on the ele-
ment

These quantities vary significantly over many decades but can easily put
on an equal footing.
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Scaled absorption

T =
I

I0
= e−µz

µ =
ρmNA

M
σa

σa ∼
Z 4

E 3

scale σa for different ele-
ments by E 3/Z 4 and plot
together

remarkably, all values lie on a common curve above the K edge and
between the L and K edges and below the L edge
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Absorption edge nomenclature

The states are labeled ac-
cording to the principal,
orbital angular momentum,
and total angular momentum
quantum numbers, n, l , and
j , respectively

The absorption edges are la-
beled according to the initial
principal quantum number of
the photoelectron:

n = 1 −→ K

n = 2 −→ L

n = 3 −→ M

Roman numerals increase from low to high values of l and j
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Calculation of σa

From first-order perturbation theory, the absorption cross section is given
by

σa =
2π

~c
V 2

4π3

∫
|Mif |2δ(Ef − Ei )q2 sin θdqdθdϕ

where the matrix element Mif be-
tween the initial, 〈i |, and final, |f 〉,
states is given by

The interaction Hamiltonian is ex-
pressed in terms of the electromag-
netic vector potential

Mif = 〈i |HI |f 〉

HI =
e~p · ~A
m

+
e2A2

2m

~A = ε̂

√
~

2ε0Vω

[
ake

i~k·~r + a†ke
−i~k·~r

]
The first term gives absorption while the second produces Thomson
scattering so we take only the first into consideration now.
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Free electron approximation

In order to evaluate the Mif matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

|i〉 = |1〉γ |0〉e

〈f | = e〈1|γ〈0|

Thus

Mif =
e

m

√
~

2ε0Vω

[
e〈1|γ〈0|(~p · ε̂)ae i

~k·~r + (~p · ε̂)a†e−i
~k·~r |1〉γ |0〉e

]
The calculation is simplified if the interaction Hamiltonian is applied to the
left since the final state has only a free electron and no photon
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Free electron approximation

e〈1|~p = (~~q)e〈1|

γ〈n|a = (
√
n + 1)γ〈n + 1|

γ〈n|a† = (
√
n)γ〈n − 1|

The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

e〈1|γ〈0|(~p · ε̂)a = ~(~q · ε̂)e〈1|γ〈1|

e〈1|γ〈0|(~p · ε̂)a† = 0

Mif =
e

m

√
~

2ε0Vω

[
~(~q · ε̂)e〈1|γ〈1|e i

~k·~r |1〉γ |0〉e + 0
]

=
e~
m

√
~

2ε0Vω
(~q · ε̂)e〈1|e i

~k·~r |0〉e =
e~
m

√
~

2ε0Vω
(~q · ε̂)

∫
ψ∗f e

i~k·~rψid~r
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φ(~Q) =
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V

∫
e−i~q·~re i

~k·~rψ1s(~r)d~r

=

√
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V

∫
ψ1s(~r)e i(

~k−~q)·~rd~r

=

√
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V

∫
ψ1s(~r)e i

~Q·~rd~r

The initial electron wavefunction is
simply that of a 1s atomic state
while the final state is approxi-
mated as a plane wave

The integral thus becomes

which is the Fourier transform of
the initial state 1s electron wave
function
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final
direction (ϕ, θ) is

|Mif |2 =

(
e~
m

)2 ~
2ε0V 2ω

(q2 sin2 θ cos2 ϕ)φ2(~Q)

and the final cross-section per K electron can now be computed as

σa =
2π

~c
V 2

4π3

(
e~
m

)2 ~
2ε0V 2ω

I3 =

(
e~
m

)2 1

4π2ε0cω
I3

where the integral I3 is given by

I3 =

∫
φ2(~Q)q2 sin2 θ cos2 ϕδ(Ef − Ei )q2 sin θdqdθdφ
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