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Darwin approach – single layer reflectivity

Consider a single thin slab with electron
density ρ and thickness d � λ, the re-
flected and transmitted waves are func-
tions of the incident wave

where

g =
λr0ρd

sin θ

if the layer is made up of unit cells with

volume vc and structure factor F
Q=0−−−→ Z ,

the electron density is ρ = |F |/vc and
using the Bragg condition, we can rewrite
g as

d

T S

θθ

T’

for large q, the reflected
wave is weak with a phase
shift of π

S = −igT

g =
[2d sin θ/m]r0(|F |/vc )d

sin θ
=

1

m

2d2r0
vc
|F |
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Darwin approach – single layer transmission

g =
1

m

2d2r0
vc
|F | =

λr0d

vc sin θ
|F |

since vc ∼ d3 then g ∼ r0/d ≈ 10−5

from Chapter 3

g0 =
λρat f

0(0)r0d

sin θ
=
λ|F0|r0d
vc sin θ

where |F0| = ρat f
0(0)vc is the unit cell

structure factor in the forward direction
at Q = θ = 0

this can be rewritten in terms of g as

g0 = g
|F0|
|F |

d

T S

θθ

T’

the transmitted wave is equal
in amplitude to the incident
wave but gains a phase shift
as it passes through the layer

T ′ = (1− ig0)T ≈ e−ig0T
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Kinematical reflection

Now extend this model to N layers to get the kinematical scattering
approximation as long as the total scattering is weak, Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −ig
N−1∑
j=0

e iQdje−ig0je−ig0j = −ig
N−1∑
j=0

e i(Qd−2g0)j

Q=mG

∆k

Q=mG(1+ζ) where the x-rays pass through each layer
twice

these N unit cell layers will give a recip-
rocal lattice with points at multiples of
G = 2π/d we are interested in small de-
viations from the Bragg condition:

ζ =
∆Q

Q
=

∆k

k
=

∆E
E

=
∆λ

λ
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Multiple layer reflection

rN(Q) = −ig
N−1∑
j=0

e i(Qd−2g0)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-
comes

Qd − 2g0 = mG (1 + ζ)
2π

G
− 2g0

= 2π(m + mζ − g0

π
)

rN(Q) = −ig
N−1∑
j=0

e i2π(m+mζ−g0/π)j

= −ig
N−1∑
j=0

e i2πmje i2π(mζ−g0/π)j

= −ig
N−1∑
j=0

1 · e i2π(mζ−g0/π)j
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Multiple layer reflection

This geometric series can be
summed as usual

where

ζ0 =
g0

π
=

2d2|F0|
πmvc

r0

rN(Q) = −ig
N−1∑
j=0

e i2π(mζ−g0/π)j

|rN(ζ)| = g

[
sin(πN[mζ − ζ0])

sin(π[mζ − ζ0])

]

This describes a shift of the Bragg peak away from the reciprocal lattice
point, the maximum being at ζ = ζ0/m

As ζ → ζ0/m, the modulus of the reflectivity becomes

|rN(ζ0/m)| ≈ g
πN

π
= gN

The shift in the peak is due to refraction inside the crystal and varies as
the reciprocal of the order, 1/m

As the crystal becomes infinite (N →∞) this kinematical approximation
breaks down because gN ∼ 1
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Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the
kinematical limit

As N becomes very large the nu-
merator varies rapidly and can be
replaced by its average

|rN(ζ)|2 = g2

∣∣∣∣sin(πN[mζ − ζ0])

sin(π[mζ − ζ0])
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g
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Relative position ζ

|rN(ζ)|2 → g2

2 sin2(π[mζ − ζ0])

≈ g2

2(π[mζ − ζ0])2

In the kinematical regime, away
from ζ = ζ0/m the intensity of
the reflection varies as 1/ζ2

The kinematical limit clearly
breaks down near ζ0 so we need
a dynamical diffraction theory
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Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which
propagates in the direction of the incident beam and the S wave in the
direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt
change with a small amount, −ig , of the wave being reflected and a phase
shift, (1− ig0), being added to the transmitted wave

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

At the Bragg condition, the wave from the
j + 1th plane must be in phase with the one
from the j th plane, or AMA′ ≡ mλ

If we restrict ourselves to a small bandwidth
arount the reflecting region, the phase is φ =
mπ+∆, and the independent variable, ∆ can
be related to the relative deviation in scatter-
ing vector, ∆ = mπζ
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j + 1th plane must be in phase with the one
from the j th plane, or AMA′ ≡ mλ

If we restrict ourselves to a small bandwidth
arount the reflecting region, the phase is φ =
mπ+∆, and the independent variable, ∆ can
be related to the relative deviation in scatter-
ing vector, ∆ = mπζ
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Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =

− igTj+1 +

(1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =

− igTj+1 +

(1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift

plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =

− igTj+1 +

(1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =− igTj+1 + (1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =− igTj+1 + (1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =− igTj+1 + (1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Difference equation

Let Tj and Sj be the fields just above layer j .

at point M, just above the j + 1th layer, we have the scattered field Sj+1

and at point A′ it is Sj+1e
iφ

but this must be equal to the field Sj just after passing up through the j th

layer which applies a phase shift plus the small part of the Tj field
reflected from the top of the j th layer

similarly we can write an equation for Tj+1 just below the j th plane

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Sj =− igTj+1 + (1− ig0)Sj+1e
iφ

(1− ig0)Tj = Tj+1e
−iφ + igSj+1e

iφ

these coupled equations must be solved for
an infinite stack of atomic layers

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 9 / 21



Separation of T & S fields

Sj = −igTj+1 + (1− ig0)Sj+1e
iφ, (1− ig0)Tj = Tj+1e

−iφ + igSj+1e
iφ

Rearranging the equation
for Tj (top right)

shifting up by one plane:
j + 1→ j and j → j − 1

igSj+1 = (1− ig0)Tje
−iφ − Tj+1e

−i2φ

igSj = (1− ig0)Tj−1e
−iφ − Tje

−i2φ

now substitute into the equation for Sj above

(1− ig0)Tj−1e
−iφ − Tje

−i2φ = g2Tj + (1− ig0)
[
(1− ig0)Tj − Tj+1e

−iφ
]

(1− ig0)e−iφ [Tj+1 + Tj−1] =
[
g2 + (1− ig0)2 + e−i2φ

]
Tj

the fields Tj and Tj+1 are out of phase by nearly mπ (top right equation)
since g and g0 are very small and the T wave field must attenuate as it
penetrates deeper into the crystal so our trial solution is

Tj+1 = e−ηe imπTj
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Solving for the T field

(1− ig0)e−iφ [Tj+1 + Tj−1] =
[
g2 + (1− ig0)2 + e−i2φ

]
Tj

With the trial solution Tj+1 = e−ηe imπTj

,

Tj−1 = eηe−imπTj

and substituting this solution into the defining equation for T and noting
that φ ≡ mπ + ∆

(1− ig0)e−iφ
[
e−ηe imπTj + eηe−imπTj

]
=
[
g2 + (1− ig0)2 + e−i2φ

]
Tj

(1− ig0)���
e−imπe−i∆

[
e−η���e imπ + eη���

e−imπ
]

= g2 + (1− ig0)2 +����
e−i2mπe−i2∆

(1− ig0)e−i∆
[
e−η + eη

]
= g2 + (1− ig0)2 + e−i2∆

assuming that g , g0, and ∆ are very small quantities, we can expand

(1− ig0)(1− i∆− ∆2

2
)

[
(1− η +

η2

2
) + (1 + η +

η2

2
)

]
≈ g2 + (1− 2ig0 − g2

0 ) + (1− i2∆− 2∆2)
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0 − 2∆2

η2 ≈ g2 − g2
0 + 2g0∆−∆2 = g2 − (∆− g0)2

The solution for the attenuation factor of the transmitted field is thus

iη = ±
√

(∆− g0)− g2

with fields

Tj+1 = e−ηe imπTj , Sj+1 = e−ηe imπSj
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Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

S0 = −igT0 + (1− ig0)S1e
iφ

S0 = −igT0

+ (1− ig0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− ig0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 13 / 21



Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

Sj+1 = e−ηe imπSj

Sj = −igTj + (1− ig0)Sj+1e
iφ

S0 = −igT0

+ (1− ig0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− ig0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 13 / 21



Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

Sj = −igTj + (1− ig0)Sj+1e
iφ

S0 = −igT0

+ (1− ig0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− ig0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 13 / 21



Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

S0 = −igT0 + (1− ig0)S1e
iφ

S0 = −igT0

+ (1− ig0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− ig0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 13 / 21



Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.
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Darwin reflectivity curve

It is convenient to express the
reflection coefficient in terms
of reduced units using

ε = ∆− g0,

iη ±
√
ε2 − g2

and the reduced variable x =
ε/g

r =
S0

T0
=

g

iη + (∆− g0)

=
g

iη + ε

=
g

ε±
√
ε2 − g2

=
1

x ±
√
x2 − 1

R(x) = |r |2 =


(x −

√
x2 − 1)2 x ≥ 1

1 |x | ≤ 1

(x +
√
x2 − 1)2 x ≤ −1
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the Darwin curve goes like (g/2ε)2

in the kinematic region consistent
with the kinematic limit

the relative phase between the scat-
tered and transmitted waves varies
from out of phase at x = −1 to in
phase at x = +1
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The width of the Darwin curve is
∆x = 2 which is related to the rel-
ative offset, ζ by

ζ =
gx + g0

mπ

ζtotal
D =

2g

mπ
=

4

π

(
d

m

)2 r0|F |
vc

ζFWHM
D =

(
3

2
√

2

)2

ζtotal
D

the Darwin width, ζD is independent of wavelength and only depends on
the material and Bragg reflection

the angular Darwin width, wD , varies as the angle changes

∆λ

λ
=

∆θ

θ
−→ w total

D = ζtotal
D tan θ, wFWHM

D

(
3

2
√

2

)2

ζtotal
D tan θ
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Standing waves

←− x = −1
out of phase

x = +1 −→
in phase
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Absorption effects

Silicon (111) Darwin curves

solid line is for λ = 0.70926 Å

dashed line is for λ = 0.1.5405 Å

absorption is highest at x = +1
since the standing wave field is in
phase with the atomic planes

absorption is reduced for higher en-
ergies

note that width of Darwin curve is
independent of wavelength
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absorption is highest at x = +1
since the standing wave field is in
phase with the atomic planes

absorption is reduced for higher en-
ergies

note that width of Darwin curve is
independent of wavelength

C. Segre (IIT) PHYS 570 - Spring 2020 March 12, 2020 17 / 21



Absorption effects

Silicon (111) Darwin curves

solid line is for λ = 0.70926 Å
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Energy dependence

The angular Darwin width, wD does depend on energy and polarization of
the beam
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Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection.

The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.
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Angular offset

We can calculate the angular offset by noting that the offset and width
have many common factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0

m
=
ζD

2

|F |
|F0|

∆θoff =
ζD

2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å

ωtotal
D = 0.0020◦ ∆θoff = 0.0018◦
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Darwin widths

the quantities below the widths are f 0(Q), f ′, and f ′′ (for
λ = 1.5405 Å). For an angular width, multiply times tan θ
and for π polarization, multiply by cos(2θ).
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