Today's Outline - March 12, 2020

Today's Outline - March 12, 2020

- Reflection for a single layer

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve
- Dynamical diffraction theory

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve
- Dynamical diffraction theory
- Asymmetric reflections

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve
- Dynamical diffraction theory
- Asymmetric reflections
- Dumond diagrams

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve
- Dynamical diffraction theory
- Asymmetric reflections
- Dumond diagrams
- Monochromators

Today's Outline - March 12, 2020

- Reflection for a single layer
- Kinematical approach for many layers
- Darwin curve
- Dynamical diffraction theory
- Asymmetric reflections
- Dumond diagrams
- Monochromators

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 02, 2020

Darwin approach - single layer reflectivity

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave

for large q, the reflected wave is weak with a phase shift of π

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave

for large q, the reflected wave is weak with a phase shift of π

$$
S=-i g T
$$

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

for large q, the reflected wave is weak with a phase shift of π

$$
S=-i g T
$$

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and using the Bragg condition, we can rewrite g as

for large q, the reflected wave is weak with a phase shift of π

$$
S=-i g T
$$

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and using the Bragg condition, we can rewrite g as

for large q, the reflected wave is weak with a phase shift of π

$$
S=-i g T
$$

$$
g=\frac{[2 d \sin \theta / m] r_{0}\left(|F| / v_{c}\right) d}{\sin \theta}
$$

Darwin approach - single layer reflectivity

Consider a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are functions of the incident wave where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and using the Bragg condition, we can rewrite

for large q, the reflected wave is weak with a phase shift of π

$$
S=-i g T
$$

$$
g=\frac{[2 d \sin \theta / m] r_{0}\left(|F| / v_{c}\right) d}{\sin \theta}=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T \approx e^{-i g_{0}} T
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
from Chapter 3

$$
g_{0}=\frac{\lambda \rho_{\mathrm{at}} f^{0}(0) r_{0} d}{\sin \theta}
$$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T \approx e^{-i g_{0}} T
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
from Chapter 3

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} d}{\sin \theta}=\frac{\lambda\left|F_{0}\right| r_{0} d}{v_{c} \sin \theta}
$$

where $\left|F_{0}\right|=\rho_{a t} f^{0}(0) v_{c}$ is the unit cell structure factor in the forward direction at $Q=\theta=0$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T \approx e^{-i g_{0}} T
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
from Chapter 3

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} d}{\sin \theta}=\frac{\lambda\left|F_{0}\right| r_{0} d}{v_{c} \sin \theta}
$$

where $\left|F_{0}\right|=\rho_{a t} f^{0}(0) v_{c}$ is the unit cell structure factor in the forward direction at $Q=\theta=0$
this can be rewritten in terms of g as

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T \approx e^{-i g_{0}} T
$$

Darwin approach - single layer transmission

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|=\frac{\lambda r_{0} d}{v_{c} \sin \theta}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
from Chapter 3

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} d}{\sin \theta}=\frac{\lambda\left|F_{0}\right| r_{0} d}{v_{c} \sin \theta}
$$

where $\left|F_{0}\right|=\rho_{a t} f^{0}(0) v_{c}$ is the unit cell structure factor in the forward direction at $Q=\theta=0$
this can be rewritten in terms of g as

$$
g_{0}=g \frac{\left|F_{0}\right|}{|F|}
$$

the transmitted wave is equal in amplitude to the incident wave but gains a phase shift as it passes through the layer

$$
T^{\prime}=\left(1-i g_{0}\right) T \approx e^{-i g_{0}} T
$$

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.
Proceed by adding reflectivity from each layer with the usual phase factor

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}
$$

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}
$$

where the x-rays pass through each layer twice

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x-rays pass through each layer twice

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x-rays pass through each layer twice these N unit cell layers will give a reciprocal lattice with points at multiples of $G=2 \pi / d$

Kinematical reflection

Now extend this model to N layers to get the kinematical scattering approximation as long as the total scattering is weak, $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x -rays pass through each layer twice
these N unit cell layers will give a reciprocal lattice with points at multiples of $G=2 \pi / d$ we are interested in small deviations from the Bragg condition:

$$
\zeta=\frac{\Delta Q}{Q}=\frac{\Delta k}{k}=\frac{\Delta \mathcal{E}}{\mathcal{E}}=\frac{\Delta \lambda}{\lambda}
$$

Multiple layer reflection

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
Q d-2 g_{0}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
Q d-2 g_{0}=m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right)
\end{aligned}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right) j}
\end{aligned}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right) j} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j}
\end{aligned}
$$

Multiple layer reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right) j} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
& =-i g \sum_{j=0}^{N-1} 1 \cdot e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j}
\end{aligned}
$$

Multiple layer reflection

This geometric series can be summed as usual

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j}
$$

Multiple layer reflection

This geometric series can be summed as usual

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
& \left|r_{N}(\zeta)\right|=g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
& \left|r_{N}(\zeta)\right|=g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

As $\zeta \rightarrow \zeta_{0} / m$, the modulus of the reflectivity becomes

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

As $\zeta \rightarrow \zeta_{0} / m$, the modulus of the reflectivity becomes

$$
\left|r_{N}\left(\zeta_{0} / m\right)\right| \approx g \frac{\pi N}{\pi}
$$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

As $\zeta \rightarrow \zeta_{0} / m$, the modulus of the reflectivity becomes

$$
\left|r_{N}\left(\zeta_{0} / m\right)\right| \approx g \frac{\pi N}{\pi}=g N
$$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

As $\zeta \rightarrow \zeta_{0} / m$, the modulus of the reflectivity becomes

$$
\left|r_{N}\left(\zeta_{0} / m\right)\right| \approx g \frac{\pi N}{\pi}=g N
$$

The shift in the peak is due to refraction inside the crystal and varies as the reciprocal of the order, $1 / \mathrm{m}$

Multiple layer reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right) j} \\
\left|r_{N}(\zeta)\right| & =g\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

As $\zeta \rightarrow \zeta_{0} / m$, the modulus of the reflectivity becomes

$$
\left|r_{N}\left(\zeta_{0} / m\right)\right| \approx g \frac{\pi N}{\pi}=g N
$$

The shift in the peak is due to refraction inside the crystal and varies as the reciprocal of the order, $1 / \mathrm{m}$

As the crystal becomes infinite $(N \rightarrow \infty)$ this kinematical approximation breaks down because $g N \sim 1$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

$$
\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2}
$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2}
$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{array}{r}
\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)}
\end{array}
$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{aligned}
&\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
&\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)} \\
& \approx \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{aligned}
&\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
&\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)} \\
& \approx \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{aligned}
&\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
&\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)} \\
& \approx \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

In the kinematical regime, away from $\zeta=\zeta_{0} / m$ the intensity of the reflection varies as $1 / \zeta^{2}$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{aligned}
&\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
&\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)} \\
& \approx \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

In the kinematical regime, away from $\zeta=\zeta_{0} / m$ the intensity of the reflection varies as $1 / \zeta^{2}$

Diffraction in the kinematical limit

It is useful to look at how the intensity of the reflection varies in the kinematical limit

As N becomes very large the numerator varies rapidly and can be replaced by its average

$$
\begin{aligned}
&\left|r_{N}(\zeta)\right|^{2}=g^{2}\left|\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right|^{2} \\
&\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)} \\
& \approx \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

In the kinematical regime, away from $\zeta=\zeta_{0} / m$ the intensity of the reflection varies as $1 / \zeta^{2}$

The kinematical limit clearly breaks down near ζ_{0} so we need a dynamical diffraction theory

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

M

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

M

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

M

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

At the Bragg condition, the wave from the $j+1^{\text {th }}$ plane must be in phase with the one from the $j^{t h}$ plane, or

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

At the Bragg condition, the wave from the $j+1^{\text {th }}$ plane must be in phase with the one from the $j^{t h}$ plane, or $A M A^{\prime} \equiv m \lambda$

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

At the Bragg condition, the wave from the $j+1^{\text {th }}$ plane must be in phase with the one from the $j^{\text {th }}$ plane, or $A M A^{\prime} \equiv m \lambda$

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is

M

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

M

At the Bragg condition, the wave from the $j+1^{\text {th }}$ plane must be in phase with the one from the $j^{\text {th }}$ plane, or $A M A^{\prime} \equiv m \lambda$

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is $\phi=$ $m \pi+\Delta$,

Reflectivity of a perfect crystal

In a perfect crystal, there are always two wavefields, the T wave which propagates in the direction of the incident beam and the S wave in the direction of the reflected wave

As the wavefields pass through an atomic plane, they experience an abrupt change with a small amount, -ig, of the wave being reflected and a phase shift, $\left(1-i g_{0}\right)$, being added to the transmitted wave

M
At the Bragg condition, the wave from the $j+1^{\text {th }}$ plane must be in phase with the one from the $j^{\text {th }}$ plane, or $A M A^{\prime} \equiv m \lambda$

If we restrict ourselves to a small bandwidth arount the reflecting region, the phase is $\phi=$ $m \pi+\Delta$, and the independent variable, Δ can be related to the relative deviation in scattering vector, $\Delta=m \pi \zeta$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$
but this must be equal to the field S_{j} just after passing up through the $j^{t h}$ layer which applies a phase shift

$$
S_{j}=\quad\left(1-i g_{0}\right) S_{j+1} e^{i \phi}
$$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$
but this must be equal to the field S_{j} just after passing up through the $j^{t h}$ layer which applies a phase shift plus the small part of the T_{j} field reflected from the top of the $j^{\text {th }}$ layer

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}
$$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$
but this must be equal to the field S_{j} just after passing up through the $j^{t h}$ layer which applies a phase shift plus the small part of the T_{j} field reflected from the top of the $j^{\text {th }}$ layer
similarly we can write an equation for T_{j+1} just below the $j^{\text {th }}$ plane

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}
$$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$
but this must be equal to the field S_{j} just after passing up through the $j^{\text {th }}$ layer which applies a phase shift plus the small part of the T_{j} field reflected from the top of the $j^{\text {th }}$ layer
similarly we can write an equation for T_{j+1} just below the $j^{\text {th }}$ plane

$$
\begin{aligned}
S_{j} & =-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi} \\
\left(1-i g_{0}\right) T_{j} & =T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
\end{aligned}
$$

Difference equation

Let T_{j} and S_{j} be the fields just above layer j.
at point M, just above the $j+1^{\text {th }}$ layer, we have the scattered field S_{j+1} and at point A^{\prime} it is $S_{j+1} e^{i \phi}$
but this must be equal to the field S_{j} just after passing up through the $j^{t h}$ layer which applies a phase shift plus the small part of the T_{j} field reflected from the top of the $j^{\text {th }}$ layer
similarly we can write an equation for T_{j+1} just below the $j^{\text {th }}$ plane

$$
\begin{aligned}
S_{j} & =-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi} \\
\left(1-i g_{0}\right) T_{j} & =T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
\end{aligned}
$$

these coupled equations must be solved for an infinite stack of atomic layers

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane:
$j+1 \rightarrow j$ and $j \rightarrow j-1$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane:
$j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

now substitute into the equation for S_{j} above

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

now substitute into the equation for S_{j} above

$$
\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}=g^{2} T_{j}+\left(1-i g_{0}\right)\left[\left(1-i g_{0}\right) T_{j}-T_{j+1} e^{-i \phi}\right]
$$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

now substitute into the equation for S_{j} above

$$
\begin{aligned}
\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi} & =g^{2} T_{j}+\left(1-i g_{0}\right)\left[\left(1-i g_{0}\right) T_{j}-T_{j+1} e^{-i \phi}\right] \\
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
\end{aligned}
$$

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

now substitute into the equation for S_{j} above

$$
\begin{aligned}
\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi} & =g^{2} T_{j}+\left(1-i g_{0}\right)\left[\left(1-i g_{0}\right) T_{j}-T_{j+1} e^{-i \phi}\right] \\
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
\end{aligned}
$$

the fields T_{j} and T_{j+1} are out of phase by nearly $m \pi$ (top right equation) since g and g_{0} are very small and the T wave field must attenuate as it penetrates deeper into the crystal so our trial solution is

Separation of $T \& S$ fields

$$
S_{j}=-i g T_{j+1}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}, \quad\left(1-i g_{0}\right) T_{j}=T_{j+1} e^{-i \phi}+i g S_{j+1} e^{i \phi}
$$

Rearranging the equation for T_{j} (top right)

$$
i g S_{j+1}=\left(1-i g_{0}\right) T_{j} e^{-i \phi}-T_{j+1} e^{-i 2 \phi}
$$

shifting up by one plane: $j+1 \rightarrow j$ and $j \rightarrow j-1$

$$
i g S_{j}=\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi}
$$

now substitute into the equation for S_{j} above

$$
\begin{aligned}
\left(1-i g_{0}\right) T_{j-1} e^{-i \phi}-T_{j} e^{-i 2 \phi} & =g^{2} T_{j}+\left(1-i g_{0}\right)\left[\left(1-i g_{0}\right) T_{j}-T_{j+1} e^{-i \phi}\right] \\
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
\end{aligned}
$$

the fields T_{j} and T_{j+1} are out of phase by nearly $m \pi$ (top right equation) since g and g_{0} are very small and the T wave field must attenuate as it penetrates deeper into the crystal so our trial solution is

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j},
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$ and substituting this solution into the defining equation for T

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution $\quad T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}$ and substituting this solution into the defining equation for T

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

and substituting this solution into the defining equation for T and noting that $\phi \equiv m \pi+\Delta$

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

and substituting this solution into the defining equation for T and noting that $\phi \equiv m \pi+\Delta$

$$
\begin{aligned}
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j} \\
\left(1-i g_{0}\right) e^{-i m \pi} e^{-i \Delta}\left[e^{-\eta} e^{i m \pi}+e^{\eta} e^{-i m \pi}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 m \pi} e^{-i 2 \Delta}
\end{aligned}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

and substituting this solution into the defining equation for T and noting that $\phi \equiv m \pi+\Delta$

$$
\begin{aligned}
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j} \\
\left(1-i g_{0}\right) e^{-i m \pi} e^{-i \Delta}\left[e^{-\eta} e^{i m \pi \pi}+e^{\eta} e^{-i m \pi}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 m \pi} e^{-i 2 \Delta} \\
\left(1-i g_{0}\right) e^{-i \Delta}\left[e^{-\eta}+e^{\eta}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \Delta}
\end{aligned}
$$

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

and substituting this solution into the defining equation for T and noting that $\phi \equiv m \pi+\Delta$

$$
\begin{aligned}
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j} \\
\left(1-i g_{0}\right) e^{-i m \pi} e^{-i \Delta}\left[e^{-\eta} e^{i m \pi}+e^{\eta} e^{-i m \pi}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 m \pi} e^{-i 2 \Delta} \\
\left(1-i g_{0}\right) e^{-i \Delta}\left[e^{-\eta}+e^{\eta}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \Delta}
\end{aligned}
$$

assuming that g, g_{0}, and Δ are very small quantities, we can expand

Solving for the T field

$$
\left(1-i g_{0}\right) e^{-i \phi}\left[T_{j+1}+T_{j-1}\right]=\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j}
$$

With the trial solution

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad T_{j-1}=e^{\eta} e^{-i m \pi} T_{j}
$$

and substituting this solution into the defining equation for T and noting that $\phi \equiv m \pi+\Delta$

$$
\begin{aligned}
\left(1-i g_{0}\right) e^{-i \phi}\left[e^{-\eta} e^{i m \pi} T_{j}+e^{\eta} e^{-i m \pi} T_{j}\right] & =\left[g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \phi}\right] T_{j} \\
\left(1-i g_{0}\right) e^{-i m \pi} e^{-i \Delta}\left[e^{-\eta} e^{i m \pi}+e^{\eta} e^{-i m \pi}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 m \pi} e^{-i 2 \Delta} \\
\left(1-i g_{0}\right) e^{-i \Delta}\left[e^{-\eta}+e^{\eta}\right] & =g^{2}+\left(1-i g_{0}\right)^{2}+e^{-i 2 \Delta}
\end{aligned}
$$

assuming that g, g_{0}, and Δ are very small quantities, we can expand

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{aligned}
& \left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
& 2-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2}
\end{aligned}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{aligned}
& \left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
& \not 2-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\not 2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2}
\end{aligned}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\not 2-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\not 2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}
\end{gathered}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\mathfrak{2}-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\nsupseteq-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\mathfrak{2}-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\mathfrak{Z}-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

The solution for the attenuation factor of the transmitted field is thus

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
22-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\mathfrak{2}-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

The solution for the attenuation factor of the transmitted field is thus

$$
i \eta= \pm \sqrt{\left(\Delta-g_{0}\right)-g^{2}}
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
22-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\mathfrak{2}-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

The solution for the attenuation factor of the transmitted field is thus

$$
i \eta= \pm \sqrt{\left(\Delta-g_{0}\right)-g^{2}}
$$

with fields

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
22-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+\mathfrak{2}-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

The solution for the attenuation factor of the transmitted field is thus

$$
i \eta= \pm \sqrt{\left(\Delta-g_{0}\right)-g^{2}}
$$

with fields

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j},
$$

Solving for the T field

$$
\begin{aligned}
\left(1-i g_{0}\right)\left(1-i \Delta-\frac{\Delta^{2}}{2}\right)[(1-\eta & \left.\left.+\frac{\eta^{2}}{2}\right)+\left(1+\eta+\frac{\eta^{2}}{2}\right)\right] \\
& \approx g^{2}+\left(1-2 i g_{0}-g_{0}^{2}\right)+\left(1-i 2 \Delta-2 \Delta^{2}\right)
\end{aligned}
$$

Cancelling and expanding all products keeping only second order terms

$$
\begin{gathered}
\left(1-i g_{0}-i \Delta-g_{0} \Delta-\frac{\Delta^{2}}{2}\right)\left(2+\eta^{2}\right) \approx g^{2}+2-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\not 2-2 i g_{0}-2 i \Delta-2 g_{0} \Delta-\Delta^{2}+\eta^{2} \approx g^{2}+22-2 i g_{0}-2 i \Delta-g_{0}^{2}-2 \Delta^{2} \\
\eta^{2} \approx g^{2}-g_{0}^{2}+2 g_{0} \Delta-\Delta^{2}=g^{2}-\left(\Delta-g_{0}\right)^{2}
\end{gathered}
$$

The solution for the attenuation factor of the transmitted field is thus

$$
i \eta= \pm \sqrt{\left(\Delta-g_{0}\right)-g^{2}}
$$

with fields

$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}, \quad S_{j+1}=e^{-\eta} e^{i m \pi} S_{j}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{j+1} & =e^{-\eta} e^{i m \pi} S_{j} \\
S_{j} & =-i g T_{j}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{j} & =-i g T_{j}+\left(1-i g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-i g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-i g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

$$
S_{0}\left[1-\left(1-i g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-i g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

$$
S_{0}\left[1-\left(1-i g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

$$
\frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-i g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

$S_{0}\left[1-\left(1-i g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}$

$$
\frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-i g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-i g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

$$
S_{0}\left[1-\left(1-i g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

$$
\frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}
$$

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}$,

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}$,

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}
\end{aligned}
$$

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}
\end{aligned}
$$

$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$
and the reduced variable $x=$ ϵ / g

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}=\frac{1}{x \pm \sqrt{x^{2}-1}}
\end{aligned}
$$

and the reduced variable $x=$ ϵ / g

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$
and the reduced variable $x=$ ϵ / g

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}=\frac{1}{x \pm \sqrt{x^{2}-1}} \\
R(x) & =|r|^{2}= \begin{cases}\left(x-\sqrt{x^{2}-1}\right)^{2} & x \geq 1 \\
1 & |x| \leq 1 \\
\left(x+\sqrt{x^{2}-1}\right)^{2} & x \leq-1\end{cases}
\end{aligned}
$$

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$
and the reduced variable $x=$ ϵ / g

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$
and the reduced variable $x=$ ϵ / g

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}=\frac{1}{x \pm \sqrt{x^{2}-1}}
\end{aligned}
$$

$$
R(x)=|r|^{2}= \begin{cases}\left(x-\sqrt{x^{2}-1}\right)^{2} & x \geq 1 \\ 1 & |x| \leq 1 \\ \left(x+\sqrt{x^{2}-1}\right)^{2} & x \leq-1\end{cases}
$$

the Darwin curve goes like $(g / 2 \epsilon)^{2}$ in the kinematic region consistent with the kinematic limit

Darwin reflectivity curve

It is convenient to express the reflection coefficient in terms of reduced units using
$\epsilon=\Delta-g_{0}, i \eta \pm \sqrt{\epsilon^{2}-g^{2}}$
and the reduced variable $x=$ ϵ / g

$$
\begin{aligned}
r & =\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}=\frac{g}{i \eta+\epsilon} \\
& =\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}=\frac{1}{x \pm \sqrt{x^{2}-1}}
\end{aligned}
$$

$$
R(x)=|r|^{2}= \begin{cases}\left(x-\sqrt{x^{2}-1}\right)^{2} & x \geq 1 \\ 1 & |x| \leq 1 \\ \left(x+\sqrt{x^{2}-1}\right)^{2} & x \leq-1\end{cases}
$$ the Darwin curve goes like $(g / 2 \epsilon)^{2}$ in the kinematic region consistent with the kinematic limit

the relative phase between the scattered and transmitted waves varies from out of phase at $x=-1$ to in phase at $x=+1$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\zeta=\frac{g x+g_{0}}{m \pi}
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}
\end{aligned}
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}}
\end{aligned}
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

the Darwin width, ζ_{D} is independent of wavelength and only depends on the material and Bragg reflection

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

the Darwin width, ζ_{D} is independent of wavelength and only depends on the material and Bragg reflection
the angular Darwin width, w_{D}, varies as the angle changes

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

the Darwin width, ζ_{D} is independent of wavelength and only depends on the material and Bragg reflection
the angular Darwin width, w_{D}, varies as the angle changes

$$
\frac{\Delta \lambda}{\lambda}=\frac{\Delta \theta}{\theta}
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

the Darwin width, ζ_{D} is independent of wavelength and only depends on the material and Bragg reflection
the angular Darwin width, w_{D}, varies as the angle changes

$$
\frac{\Delta \lambda}{\lambda}=\frac{\Delta \theta}{\theta} \quad \longrightarrow \quad w_{D}^{\text {total }}=\zeta_{D}^{\text {total }} \tan \theta
$$

Darwin width

The width of the Darwin curve is $\Delta x=2$ which is related to the relative offset, ζ by

$$
\begin{aligned}
\zeta & =\frac{g x+g_{0}}{m \pi} \\
\zeta_{D}^{\text {total }} & =\frac{2 g}{m \pi}=\frac{4}{\pi}\left(\frac{d}{m}\right)^{2} \frac{r_{0}|F|}{v_{c}} \\
\zeta_{D}^{F W H M} & =\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }}
\end{aligned}
$$

the Darwin width, ζ_{D} is independent of wavelength and only depends on the material and Bragg reflection
the angular Darwin width, w_{D}, varies as the angle changes

$$
\frac{\Delta \lambda}{\lambda}=\frac{\Delta \theta}{\theta} \quad \longrightarrow \quad w_{D}^{\text {total }}=\zeta_{D}^{\text {total }} \tan \theta, \quad w_{D}^{F W H M}\left(\frac{3}{2 \sqrt{2}}\right)^{2} \zeta_{D}^{\text {total }} \tan \theta
$$

Standing waves

$\longleftarrow x=-1$
out of phase

Standing waves

$$
\longleftarrow x=-1
$$

out of phase
$x=+1 \longrightarrow$ in phase

C. Segre (IIT)

Absorption effects

Absorption effects

Silicon (111) Darwin curves

Absorption effects

Silicon (111) Darwin curves solid line is for $\lambda=0.70926 \AA$

Absorption effects

Silicon (111) Darwin curves solid line is for $\lambda=0.70926 \AA$ dashed line is for $\lambda=0.1 .5405 \AA$

Absorption effects

Silicon (111) Darwin curves solid line is for $\lambda=0.70926 \AA$ dashed line is for $\lambda=0.1 .5405 \AA$ absorption is highest at $x=+1$ since the standing wave field is in phase with the atomic planes

Absorption effects

Silicon (111) Darwin curves solid line is for $\lambda=0.70926 \AA$ dashed line is for $\lambda=0.1 .5405 \AA$ absorption is highest at $x=+1$ since the standing wave field is in phase with the atomic planes absorption is reduced for higher energies

Absorption effects

Silicon (111) Darwin curves solid line is for $\lambda=0.70926 \AA$ dashed line is for $\lambda=0.1 .5405 \AA$ absorption is highest at $x=+1$ since the standing wave field is in phase with the atomic planes
absorption is reduced for higher energies
note that width of Darwin curve is independent of wavelength

Energy dependence

Energy dependence

The angular Darwin width, w_{D} does depend on energy

Energy dependence

The angular Darwin width, w_{D} does depend on energy

Energy dependence

The angular Darwin width, w_{D} does depend on energy and polarization of the beam

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}}
$$

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

By tuning a bit off on the "high" side we get even more suppression. This is called "detuning".

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|}
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ} \quad \Delta \theta^{\text {off }}=0.0018^{\circ}
$$

Darwin widths

	$\zeta_{\text {D }}^{\text {FWHM }} \times 10^{6}$								
	(111)			(220)			(400)		
$\begin{gathered} \text { Diamond } \\ a=3.5670 \AA \end{gathered}$	61.0			20.9			8.5		
	3.03	0.018	-0.01	1.96	0.018	-0.01	1.59	0.018	-0.01
$\begin{gathered} \text { Silicon } \\ a=5.4309 \AA \end{gathered}$	139.8			61.1			26.3		
	10.54	0.25	-0.33	8.72	0.25	-0.33	7.51	0.25	-0.33
Germanium$a=5.6578 \AA$	347.2			160.0			68.8		
	27.36	-1.1	-0.89	23.79	-1.1	-0.89	20.46	-1.1	-0.89

the quantities below the widths are $f^{0}(Q), f^{\prime}$, and $f^{\prime \prime}$ (for $\lambda=1.5405 \AA$). For an angular width, multiply times $\tan \theta$ and for π polarization, multiply by $\cos (2 \theta)$.

