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Hydrated surface of magnetite

Magnetite, Fe3O4, is a
technologically impor-
tant material for envi-
ronmental remediation

It is important to know
the structure of the
surface of magnetite
in a hydrated environ-
ment to understand
the processes that fa-
vor sorption of heavy
elements

There are two possible surfaces, the oxygen octahedral iron, OOI (a), and
the oxygen mixed-iron, OMI (b), terminations

“Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction,” S.C. petitto et al. Surf.
Sci. 604, 1082-1093 (2010).
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Magnetite (111) surface

Crystal truncation rod measurements require an oriented single crystal
with a polished and cleaned surface.

The final polished surface has clear terraces of between 150 Å–700 Å and
a surface roughness of about 1.4 Å as seen in the inset from the atomic
force microscopy images

“Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction,” S.C. petitto et al. Surf.
Sci. 604, 1082-1093 (2010).
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CTR data and modeling

“Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction,” S.C. petitto et al. Surf.
Sci. 604, 1082-1093 (2010).
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Hydrated surface of magnetite

The result of the modeling of the CTR data indicates that the surface is
75% OOI and 25% OMI

The modeling also can provide details about the distance changes in the
first layers at the surface

“Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction,” S.C. petitto et al. Surf.
Sci. 604, 1082-1093 (2010).
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Buried interfaces of Ag films on silicon

Understanding the process of sur-
face wetting during thin film depo-
sition is crucial to the semiconduc-
tor industry

This study uses at in situ reflec-
tivity and CTR measurements to
study the structural details of Ag
film growth on a Si (111) surface

A Si(111) crystal is placed in an ultra-high vacuum chamber and
flash-annealed to clean and reconstruct the surface

Ag was thermally evaporated on the surface and both reflectivity
measurements of the surface and CTR measurements of the Ag (001)
growth layer were performed

“Critical role of a buried interface in the Stranski-Krastanov growth of metallic nanocrystals: Quantum size effects in
Ag/Si(111)-(7×7),” Y. Chen et al. Phys. Rev. Lett. 114, 035501 (2015).
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Reflectivity & CTR measurements

Reflectivity “sees” the entire sur-
face while CTR measures only
the incommensurate Ag crystalline
layer on the surface

At 0.9 monolayer of Ag the reflec-
tivity shows 3 layers as does the
CTR measurement

These results indicate that the is-
lands have an incommensurate Ag
fcc structure all the way to the sur-
face while the wetting layer is com-
mensurate with the Si (111)

Modeling shows that the islands are
displaced from the surface

“Critical role of a buried interface in the Stranski-Krastanov growth of metallic nanocrystals: Quantum size effects in
Ag/Si(111)-(7×7),” Y. Chen et al. Phys. Rev. Lett. 114, 035501 (2015).
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Ag island height & quantum confinement

Island layer height distributions from reflectivity and CTR are well
correlated and indicate that 3 layers are the minimum for stability

Depositions as a function of temperature show that the island height
distribution increases and broadens due to mobility of Ag atoms

The exceptional stability of the three layer islands is consistent with
quantum confinement effects that drive the growth process

“Critical role of a buried interface in the Stranski-Krastanov growth of metallic nanocrystals: Quantum size effects in
Ag/Si(111)-(7×7),” Y. Chen et al. Phys. Rev. Lett. 114, 035501 (2015).
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In plane structure of islands

The large in-plane orien-
tational disorder can be
seen from the azimuthal
scattering profile that is
3 degrees wide The nar-
row peak is the azimuthal
scan of the commensurate
wetting layer

The islands thus have a weak interaction with the substrate compared to
the wetting layer

“Critical role of a buried interface in the Stranski-Krastanov growth of metallic nanocrystals: Quantum size effects in
Ag/Si(111)-(7×7),” Y. Chen et al. Phys. Rev. Lett. 114, 035501 (2015).
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Modulated structures

By definition crystals have always been considered to have long range
order.

However, it is common to see structures where the positions of the atoms
is modulated (e.g. charge density waves, magnetic lattices, etc.) according
to xn = an + u cos(qan), where: a is the lattice parameter, u is the
amplitude of the displacement, and q = 2π/λm is the wave vector of the
modulation.

If λm is a multiple or a rational fraction of a, it is called a commensurate
modulation but if λm = ca, where c is an irrational number, then it is an
incommensurate modulation.
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Diffraction from a modulation

For simple a 1D modulated
structure, we can compute
the scattering

assuming

xn = an + u cos(qan)

and that the scattering factor
for each atom is set to unity

for the displacement u small,
this becomes

A(Q) =
N−1∑
n=0

e iQxn =
N−1∑
n=0

e iQ[an+u cos(qan)]

=
N−1∑
n=0

e iQane iQu cos(qan)

A(Q) ≈
N−1∑
n=0

e iQan [1 + iQu cos(qan) + · · · ]

A(Q) ≈
N−1∑
n=0

e iQan + i

(
Qu

2

)[
e i(Q+q)an + e−i(Q−q)an

]
I (Q) = N

(
2π

a

)∑
h

δ(Q−Gh) +

(
Qu

2

)2 [
δ(Q+q−Gh) + δ(Q−q−Gh)

]
the diffraction pattern has main Bragg peaks plus satellite peaks
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Quasiperiodic scattering

I (Q) = N

(
2π

a

)∑
h

δ(Q−Gh) +

(
Qu

2

)2 [
δ(Q+q−Gh) + δ(Q−q−Gh)

]

This kind of scattering pat-
tern holds for both commen-
surate and incommensurate
modulations and there are
multiple satellites around the
Q = 0 as well as every main
peak

If the modulation of the
structure is a multiple of the
lattice parameter, the modu-
lation is simply a superlattice
and the actual lattice param-
eter will be changed.
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Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry
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5-fold symmetry

The electron micrographs
show that there must be long
range order to be able to get
such sharp diffraction peaks

The 5-fold symmetry is ev-
ident in the 10 spots sur-
rounding the center of the
left image and the pentago-
nal arrangements of atoms in
the image on the right.

This metastable phase was also found with Fe and Cr in the place of Mn.

Other groups have discovered stable icosahedral phases with three and two
elements.

“Metallic phase with long-range orientational order and no translational symmetry,” D. Shechtman, I. Blech, D. Gratias, and
J.W. Cahn, Phys. Rev. Lett. 53, 1951-1953 (1984)
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Quasicrystal diffraction patterns

The Al65Cu20Fe15 system was one of the first stable quasicrystals to be
discovered. Later discovery of stable quasicrystals in the Ta-Te, Cd-Ca,
and Cd-Yb systems enabled large crystals to be grown.

The diffraction pattern and
SEM images show the hall-
mark of an icosahedral crystal

“A stable quasicrystal in Al-Cu-Fe system,” A.-P. Tsai, A. Inoue, and T. Masumoto, Jap. J. Appl. Phys. 26, L1505 (1987)
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Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as
well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its
instantaneous position, ~Rn + ~un where ~un is the displacement from the
equilibrium position, ~Rn. Computing the intensity:

I =

〈∑
m

f (~Q)e i
~Q·(~Rm+~um)

∑
n

f ∗(~Q)e−i
~Q·(~Rn+~un)

〉
=
∑
m

∑
n

f (~Q)f ∗(~Q)e i
~Q·(~Rm−~Rn)

〈
e i
~Q·(~um−~un)

〉
The last term is a time average which can be simplified by first taking the
scalar product, ~Q · ~un = uQn to project the displacement along the
scattering vector, then applying the Baker-Hausdorff theorem,〈
e ix
〉

= e−〈x
2〉/2〈
e i
~Q·(~um−~un)

〉
=
〈
e iQ(uQm−uQn)

〉
= e−〈Q

2(uQm−uQn)2〉/2
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Thermal Diffuse Scattering

ITDS =
∑
m

∑
n

f (~Q)e−Me i
~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[
eQ

2〈uQmuQn〉 − 1
]

The TDS has a width deter-
mined by the correlated dis-
placement of atoms which is
much broader than a Bragg
peak.

These correlated motions are
just phonons.

A 0.5mm Si wafer illumi-
nated by 28keV x-rays from
an APS undulator were used
to measure the phonon dis-
persion curves of silicon

incident beam along (100)

M. Holt, et al. Phys. Rev. Lett. 83, 3317 (1999).
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Properties of the Debye-Waller Factor

For crystals with several different
types of atoms, we generalize the
unit cell scattering factor.

B j
T = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2
x + u2

y + u2
z 〉

= 3〈u2
x 〉 = 3〈u2

Q〉

F u.c. =
∑
j

fj(~Q)e−Mj e i
~Q·~rj

Mj =
1

2
Q2〈u2

Qj〉

=
1

2

(
4π

λ

)2

sin2 θ〈u2
Qj〉

Mj = B j
T

(
sin θ

λ

)2

B iso
T =

8π2

3
〈u2〉

In general, Debye-Waller factors can be anisotropic
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The Debye Model

The Debye model can be used to
compute BT by integrating a lin-
ear phonon dispersion relation up
to a cutoff frequency, ωD , called
the Debye frequency.

BT is given as a function of the
Debye temperature Θ.

BT =
6h2

mAkBΘ

[
φ(Θ/T )

Θ/T
+

1

4

]
φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1
dξ

BT [Å
2
] =

11492T[K]

AΘ2[K2]
φ(Θ/T) +

2873

AΘ[K]
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to a cutoff frequency, ωD , called
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Debye Temperatures

BT =
11492T

AΘ2
φ(Θ/T )

+
2873

AΘ

diamond is very stiff and Θ
does not vary much with
temperature

copper has a much lower
Debye temperature and a
wider variation of thermal
factor with temperature

A Θ B4.2 B77 B293

(K) (Å2)

C∗ 12 2230 0.11 0.11 0.12
Al 27 428 0.25 0.30 0.72
Cu 63.5 343 0.13 0.17 0.47
∗diamond
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Powder diffraction
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