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® | attices & space groups
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e XRayView demonstration
® Crystal Truncation Rods
e Diffuse Scattering

® Modulated structures

® | attice vibrations

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4,6, 7, 10
due Tuesday, March 10, 2020
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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at
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the unit cell structure factor is thus
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at
1
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ait+a), n= 5(32 +33), n= §(a1 + a3)
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at

1, . . . 1 o . 1 .
—(a1 + 82), r3 = 5(32 + 33), rg = 5(31 + 33)

rn=0, =

the unit cell structure factor is thus

Fiss = zelca
= f(G) (1+el7r(h+k) 4 eim(kt) +e"“(”+’)>
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0 otherwise
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

S S . R I

rn =0, r = 5(81 + 32), r3 = 5(82 + 83) rg = 5(31 + 33)

1. - . S

Z( 1+3+3), K=
L1 - - O -
= Z(al +33,+333), rz= 1(331 + 3 + 333)
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

S S . R I

rn =0, = 5(81 + 32), r3 = 5(32 + 83) ry = 5(31 + 33)

1. - . S

Z( 1+d2+33), =
L1 - - O -
r7 = Z(al + 33> + 333), rg = 2(331 + ar + 333)

(331 + 332 + &)

el
I

Fﬂﬁmond _ f(@)(l 1 eim(htk) 4 gim(k+])
1 eim(htl) 4 gin(hktD)/2 | gim(3h+3k+1)/2

4 eim(h+3k+30)/2 eirr(3h+k+3l)/2)

This is non-zero when h,k,/ all even and h +
k +1=4nor hk,I all odd
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The Ewald sphere

The Ewald sphere is a construct which per-

mits the enumeration of reflections which ful-
fill the Laue diffraction condition.
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The Ewald sphere is a construct which per-
mits the enumeration of reflections which ful-
fill the Laue diffraction condition.

The sphere radius is set by the length of the k
and k' vectors which characterize the incident
and scattered (where the detector is placed)
x-rays and Ak being the bandwidth of the
incident x-rays

As the detector moves, k' rotates but the
Ewald sphere remains constant.

The xrayview program can be used to gain a
of the Ewald sphere.
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The Ewald sphere

The Ewald sphere is a construct which per-
mits the enumeration of reflections which ful-
fill the Laue diffraction condition.

The sphere radius is set by the length of the k
and k' vectors which characterize the incident
and scattered (where the detector is placed)
x-rays and Ak being the bandwidth of the
incident x-rays

As the detector moves, k' rotates but the
Ewald sphere remains constant.

The xrayview program can be used to gain a more intuitive understanding

of the Ewald sphere.

http://www.phillipslab.org/software
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Ewald sphere & the reciprocal lattice
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Ewald sphere & the reciprocal lattice

The reciprocal lattice is
defined by the unit vec-
tors a] and 3.
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incident wave vector k
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Ewald sphere & the reciprocal lattice

The reciprocal lattice is
defined by the unit vec-
tors a7 and 3.

The key parameter is the
relative orientation of the
incident wave vector k

As the crystal is rotated
with respect to the inci-
dent beam, the reciprocal
lattice also rotates

When the Ewald sphere intersects a reciprocal lattice point there will be a
diffraction peak in the direction of the scattered x-rays. The diffraction
vector, @, is thus a reciprocal lattice vector

G = h3; + k&
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Ewald construction

It is often more con-
venient to visualize the
Ewald sphere by keep-
ing the reciprocal lattice
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It is often more con-
venient to visualize the
Ewald sphere by keep-
ing the reciprocal lattice
fixed and ‘“rotating” the
incident beam to visual-
ize the scattering geome-
try.

In directions of kK’ (detec-
tor position) where there
is no reciprocal lattice
point, there can be no
diffraction peak.
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Ewald construction

It is often more con-
venient to visualize the
Ewald sphere by keep-
ing the reciprocal lattice
fixed and ‘“rotating” the
incident beam to visual-
ize the scattering geome-
try.

In directions of kK’ (detec-
tor position) where there
is no reciprocal lattice
point, there can be no
diffraction peak.

If the crystal is rotated slightly with respect to the incident beam, k, there
may be no Bragg reflections possible at all.

C. Segre (IIT)

PHYS 570 - Spring 2020
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Polychromatic radiation
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If Ak is large enough,
there may be more than
one reflection lying on
the Ewald sphere.

With an area detector,
there may then be multi-
ple reflections appearing
for a particular orienta-
tion (very common with
protein crystals where
the unit cell is very

large).
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Polychromatic radiation

If Ak is large enough,
there may be more than
one reflection lying on
the Ewald sphere.

With an area detector,
there may then be multi-
ple reflections appearing
for a particular orienta-
tion (very common with
protein crystals where
the unit cell is very

large).

In protein crystallography, the area detector is in a fixed location with
respect to the incident beam and the crystal is rotated on a spindle so that
as Laue conditions are met, spots are produced on the detector at the

diffraction angle
C. Segre (IIT)

PHYS 570 - Spring 2020
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Multiple scattering
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If more than one recipro-
cal lattice point is on the
Ewald sphere, scattering
can occur internal to the
crystal.
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If more than one recipro-
cal lattice point is on the
Ewald sphere, scattering
can occur internal to the
crystal.

The xrays are first scat-
tered along E;,,t then
along the reciprocal lat-
tice vector which con-
nects the two points on
the Ewald sphere, G and
to the detector at k.
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Multiple scattering

If more than one recipro-
cal lattice point is on the
Ewald sphere, scattering
can occur internal to the
crystal.

The xrays are first scat-
tered along Eint then
along the reciprocal lat-
tice vector which con-
nects the two points on
the Ewald sphere, G and
to the detector at k.

This is the cause of monochromator glitches which sometimes remove
intensity but can also add intensity to the reflection the detector is set to

measure.
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Laue diffraction

The Laue diffraction
technique uses a wide
range oi radiation from
Kmin t0 Kmax
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The Laue diffraction
technique uses a wide
range oi radiation from
kmin to kmax

These define two Ewald
spheres and a volume
between them such that
any reciprocal lattice
point  which lies in
the volume will meet
the Laue condition for
reflection.
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Laue diffraction

The Laue diffraction
technique uses a wide
range oi radiation from
kmin to kmax

These define two Ewald
spheres and a volume
between them such that
any reciprocal lattice
point  which lies in
the volume will meet
the Laue condition for
reflection.

This technique is useful for taking data on crystals which are changing or
may degrade in the beam with a single shot of x-rays on a 2D detector.

C. Segre (lIT)
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Diffraction resources

XRayView
http://www.phillipslab.org/downloads
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http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
https://subversion.xray.aps.anl.gov/trac/pyGSAS
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Bilbao Crystallography Server

http://www.cryst.ehu.es/
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Diffraction resources

XRayView

http://www.phillipslab.org/downloads

Bilbao Crystallography Server

http://www.cryst.ehu.es/

Hypertext Book of Space Groups

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

GSAS-II

https://subversion.xray.aps.anl.gov/trac/pyGSAS
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XRayView demonstration

Exercise 1 - Ewald sphere
Exercise 4 - Wavelength
Exercise 8 - Laue diffraction

Exercise 9 - Serial crystallography
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Fd3m F4,/d32Im m3m No. 227
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26 §-x 44y, 4tz
7 g -nits
B irxftyi-z
29 4 -zd-x -y
30 {45 ity -y
Bl g-z i+, 4+y
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33 5-yi-ni-x
34%+y,:§—;.%+x
35 3ty ita iy
36 G-yt ity
%+y 37 X,y
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Pty 25yx
%—v 43 z,p,x
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Wyckoff Positions of Group 195 (P23)

Muttiplicity| WYekof® synfgeew! Coordinates
12 j 1
6 2.
6 h 2
g g 2
6 f 2.

[ 4 | e | =

[ 3 | o [ 222

[ 3 [ ¢ | 22

[+ [ o | 2

[ 1 [ a | =
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Wyckoff Positions of Group 227 (Fd-3m) [origin choice 1]

Multiplicity Wyckoff| Site Coordinates
P letter |symmetry (0,0,0) +(0,1/2,142) + (1/2,0,1/2) + (1/2,112,0) +
(X yH122+12) (e 12y+12.2) pa12y2+102)
(24112 X y+1. (204 12y+112)  (2+12x4112)
(-y+1122+1/2 (y+12-2-x+112) (y-z+ 172 %+1/2)
(f+3f4 X+4-Z434)  (y+ 14 1104 Z+174) (y+ 14 x+314.2+3/4)  (-y+3/4 x+214 z+1/4)
(e 304 z+ 104 -y 304)  (x+ 24 20304 y+ 14) - (et 14 20114 -y+ 114) (0104 -2+ 204 y+214)
190 ’ (Z+304y+ 114 e 3d) (z+ 1A #3014 xe304) (Z+34A y+3IA )t UA)  (z+ 1A 2y 1A x+ 14A)
(ot 112 oy 1Az 1A (x4 VA y+3IA 24 304)  (x+304 y+3IA 2+ 14)  (x+304 y+1/4 2+314)
1 1A 1) (231 s A1) (24104 XF A y+34)  (2+314 x+314 y+114)
(Y104 -2+ 108 e 14) (y+ 304 Z+304 %+ 104) - (y+3/4 2+ 114 x+3/4)  (y+1/4 2+3/4 -x+3/4)
(-y+172 xz+102) (yxz) (-yx+112,-2+102) (y+1/2-x+112 -2)
(+1/2,-2y+112) (x+ 112 -2z+112, (xz.y) (-x.z+102 y+112)
(z+112 yx+112) (zy+ 1R o) @20 (Zyn)
(B -+ 154) (718 +112y+314) (3/8 y+1/2y+3/4) (518 ~yy+1/4)
g+ 112 118 y) (314,118 y+112) (y+ 304 318 y+112) (y+114,5/8 -y)
% " 5 (y+112,y+ 314, TIB) (y+ U2y +314 318)  (yy+11d 518)
(118 y+1/4 y) (31By+3I4y+1/2) (T8 -y+3I4 -y+142) (5/8,y+1/d -y)
(Y118 y+ 1) (y+112,3/8y+3/) (-y+112, T/ -y+304) (-y,5/8 y+1/4)
(- y+1/4 VUB) (y+3/4y+1/2,318)  (-y+3/4 y+112,748) (y+1/4,-5/8)
(xxZ (Xt 122+112) (1124 1/2,2) (x+1/2,%,-2+1/2)
(zZxx) (Z+12 x-x+1/2) (-2 %+ 12 x+1/2) (-z+120+1/2 %)
% m (xzx) (-x+ 12 2+112 %) 3+ 12, z-x+112) (X -Z+12 x4 112)
g (304 3114 -z 314) (14 001 1A -2+ 14) (114 -+ 304 2+314)  (x+314 x+ 214 2+ 114)
(304 20114 e 314) (x+ 204 Ze A )+ 104) - (3104 -z 114 i 104) (011424204 %+ 314)
(24204 x+ 114, 24 3/4) (2+ 14 434 x+3J4) - (-Z+314 x4 24 x+ 1A (-z+114, 2+ 1/ x+1/4)
(x,0,0) (%,112,12) (0x0) (112-%1/2)
48 f 2Zmm  |[(0,0%) (172112%) (304 0+ 114 314) (114 -x+1/4,1/4)
(e+214 114,304 (-x+3/4,3/4,114) (3/4 114 x+3/4) (1/4 3/4 x+3/4)
2 o am (xxx) (XX 12 x+112) (F2X412%) 12X+ 102)
) (k34 w114, e 31A) (o 1 x4 ek 1) (104 0 34 3+ 3J4) (x+3)4 x+ 314 x+1/4)
16 d -3m (5/8 5/8,5/8) (3/8,7/8,1/8) (7/8,1/5,3/8) (1/8,3/8,7/8)
16 ¢ -3m |[(1/8,1/8,1/8) (718 218 5/8) (3/8 5/8, 7/6) (518, 7/8 318)
8 b -43m||(112,112,1/2) (174 3/4 144)
8 a -43m ||(0,0,0) (3/4,1/4,3/4)
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Diffraction from a Truncated Surface

For an infinite sample, the diffraction
spots are infinitesimally sharp.
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Diffraction from a Truncated Surface

For an infinite sample, the diffraction
spots are infinitesimally sharp.

With finite sample size, these spots
grow in extent and become more dif-
fuse.

If the sample is cleaved and left with
flat surface, the diffraction will spread
into rods perpendicular to the surface.

The scattering intensity can be ob-
tained by treating the charge distri-
bution as a convolution of an infinite
sample with a step function in the z-
direction.
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CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude

A(Q).
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CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude

A(Q).

o
FCTR — A(é) Z eina3j
j=0
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The scattering amplitude F¢TR along a crystal truncation rod is given by
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A(Q). | | |
this sum has been discussed previ-

CTR (ﬂ) i Qo] ously and gives
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The scattering amplitude F¢TR along a crystal truncation rod is given by

summing an infinite stack of atomic layers, each with scattering amplitude

A(Q). | | |
this sum has been discussed previ-

CTR (ﬂ) i Qo] ously and gives
F = A Q e’ za3)
j=0

__AQ
- 1 _ eina3

C. Segre (IIT) PHYS 570 - Spring 2020 Feburary 27, 2020 19 /22



CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude
A(Q). | | |
this sum has been discussed previ-
00 ously and gives
FCTR — A(é) Z eina3j
e or, in terms of the momentum

= - transfer along the z-axis,
A(Q) A(Q) _
1— elea3 1— elZﬂ'l
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CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude
A(Q).
this sum has been discussed previ-
00 ously and gives
FCTR — A(é) Z eina3j
e or, in terms of the momentum
= = transfer along the z-axis,
A(G) A(Q) Q. = 211/

T 1 ei@a 1 _ ei2nl

since the intensity is the square of the scattering factor
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CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude
A(Q).
this sum has been discussed previ-
00 ously and gives
FCTR — A(é) Z eina3j

e or, in terms of the momentum
= = transfer along the z-axis,
A(G) A(Q) Q. = 211/

T 1 ei@a 1 _ ei2nl

since the intensity is the square of the scattering factor

2

[CTR _ ‘/_—CTR’z _ AlQ)
(1 e2rl) (1 — e—i2rl)
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CTR Scattering Factor

The scattering amplitude F¢TR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude
A(Q).
this sum has been discussed previ-
00 ously and gives
FCTR — A(é) Z eina3j
e or, in terms of the momentum
= = transfer along the z-axis,
AQ _ AR Q. = 2rl/a3

T 1 ei@a 1 _ ei2nl

since the intensity is the square of the scattering factor

2

= o 12
[CTR _ ‘/_—CTR’z _ A(Q) _ ‘A(Q)‘
(1 _ ei27rl) (1 _ efi27'rl) 4sin2 (7r/)
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.

L2
ICTR: ‘A(Q)’
4sin2(Qza3/2)
L2
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 4sin® (7] + q,a3/2)
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.

L2
JCTR _ ‘A(Q)’
4 sin2 (Qza3/2)
L2
ol
 4sin® (7] + q,a3/2)
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.

JCTR _ ‘A(é)r
4sin? (Q,a3/2)
o

" 4sin? (1] + qza3/2)
AQ)|
~ 4sin? (qya3/2)
ol e
T 4(q:a/2)? 23
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Dependence on Q

When [ is an integer (meeting the Laue condition), the scattering factor is

infinite but just off this value, the scattering factor can be computed by
letting Q; = g, + 27/as3, with g, small.

102

12
ICTR: ‘A(Q)’ 1
4sin? (Q,a3/2) 10
S 12
) A(Q)] 3
4sin? (] + g,a3/2) 100
o 12
o)
 4sin’(q,a3/2)
L2 L2 ‘
|a@] ) 0 o i
Y WGP @A @
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer
penetrated

10?

10

ICTR

0 2n 47
Q,
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer
penetrated

10?
oo
FETR = A(Q) D % 10’
—
J o
'_
O—
100 N
10"
0 27 4r

Q,
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer
penetrated

102
oo
FCTR — A(é) Z ein33J'e*ﬂJ' 101
—e
J o
'_
O—
10° -
101+
0 2n 4n

Q,
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer
penetrated

102
oo
FCTR — A(é) Z ein33J'e*ﬂJ' 101
j=0
N o
_AQ) o
1 — eiQ:a30—R 100
101+
0 2n 4n

Q,
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer
penetrated

FCTR _ A(é) Z e/Qz33j g =B
j=0

J
__AQ)
1— eiQZBB e*ﬁ

0 2n 47
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Absorption Effect

Absorption effects can be included as well by adding a term for each layer

penetrated

10?
o0

FCTR _ A(Q) Z e/Qza3j o= 0] 10"
j=0

3 2
__AQ) o
1_ eiQasg—B 10°

This removes the infinity and
increases the scattering profile 1071
of the crystal truncation rod

C. Segre (IIT) PHYS 570 - Spring 2020

2n 47

Feburary 27, 2020 21/22



Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10?
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it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10?

Ftotal — I_—CTR + Ftop layer
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

102
Ftotal — I_—CTR + Ftop layer
1
- 10
_ AQ)
1 — ei2n! E
O—
10°
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0 2n 4n
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10
Ftotal — I_—CTR + Ftop layer
1
- 10
__AQ)
1 — ei2rml E
- . O
—i2m(14+20)/ —
+ A(Q)e =) 100
107
0 2n 4n
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10?
Ftotal — I_—CTR + Ftop layer
. 10°
_ AQ)
1_ ei2nl i
o O
—i2n(14-20)/ 2
+ A(Q)e i2m(1+20) 10°
where zj is the relative displace-
ment of the top layer from the 1
bulk lattice spacing a3 10 1
0 2n 4n
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10?

Ftotal — I_—CTR + Ftop layer

. 10’

_ AQ)

1_ ei2nl i
2\ —i2m(1420)! S

+ A(Q)e i2m(1+20) 10°
where zj is the relative displace-
ment of the top layer from the 1
bulk lattice spacing a3 10 1
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes

it an ideal probe of electron density of adsorbed species or single atom
overlayers.

10?

Ftotal — I_—CTR + Ftop layer
A(Q)

1 — ei2rml

+ A(Q’)efi27r(1+zo)l

10

ICTR

10°

where zj is the relative displace-
ment of the top layer from the
bulk lattice spacing a3 107
This effect gets larger for larger ‘

momentum transfers Q,
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