
Today’s Outline - February 25, 2020

• Information about:

(a) Final presentation
(b) Final project

• Lattice & basis functions

• Reciprocal lattice for FCC

• Crystal structure factor

• Ewald construction
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Chapter 3:1,3,4,6,8
due Thursday, February 27, 2020
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Final presentation

1. Choose paper for presentation

2. Clear it with me!

3. Do some background research on the technique

4. Prepare a 15 minute presentation

5. Be ready for questions!
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Final project

1. Come up with a potential experiment

2. Make sure it is a different technique than your final
presentation

3. Clear it with me!

4. Find appropriate beamline(s) and if needed contact
the beamline scientists (they are used to it)

5. Lay out proposed experiment (you can ask for help!)

6. Make sure to give reasonable answers forall the
questions

7. Put me as one of the investigators of the proposal
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Scattering from ordered crystals

Liquid scattering and small angle scattering provide struc-
tural information about highly disordered systems and long
length scales, respectively.

Another aspect of kinematical scattering is what is ob-
tained from ordered crystalline materials.

In this case, the distances probed are similar to those in
liquid scattering but the sample has an ordered lattice
which results in very prominent diffraction peaks separated
by ranges with zero scattered intensity.

We will now proceed to develop a model for this kind of
scattering starting with some definitions in 2D space.
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Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional
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More about lattice vectors

a2

a1

a2

a1

sometimes conventional axes...

...are not primitive
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Miller indices

a2

a1

(10)(20)
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planes designated (hk), intercept the
unit cell axes at
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for a lattice with orthogonal unit vec-
tors
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a21
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k2

a22
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Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =
2π

Vc
~a2 ×~a3 ~a∗2 =

2π

Vc
~a3 ×~a1 ~a∗3 =

2π

Vc
~a1 ×~a2
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The lattice and basis functions

If the basis of a one-dimensional system is described by the function B(x)
then the crystal is described by the function

C(x) =
∑
n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =
∑
n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞
−∞
L(x ′)B(x − x ′)dx ′ =

∫ ∞
−∞

∑
n

δ(x ′ − na)B(x − x ′)dx ′

=
∑
n

∫ ∞
−∞

δ(x ′ − na)B(x − x ′)dx ′ =
∑
n

B(x − na) = C(x)
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Scattering amplitude

F crystal(~Q) =
N∑
l

fl(~Q)e i
~Q·~rl

=
N∑

~Rn+~rj

fj(~Q)e i
~Q·(~Rn+~rj )

=
∑
j

fj(~Q)e i
~Q·~rj
∑
n

e i
~Q·~Rn = F unit cellF lattice

Since F crystal(~Q) is simply the Fourier Transform of the crystal function,
C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time it
gives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3
~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl
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ŷ

2
− ẑ
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(ŷ + ẑ − x̂) =

a3

4

~a∗1 =
2π

vc
~a2 ×~a3 =

2π

vc

a2

4
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ẑ

2
+

x̂

2
− ŷ
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ẑ

2
− x̂

2

)
~a∗2 =

4π

a

(
ẑ
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ŷ

2
+

ẑ
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2

)
C. Segre (IIT) PHYS 570 - Spring 2020 February 25, 2020 11 / 20



The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =
a

2
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

SN(~Q) =
∑
n

e i
~Q·~Rn

=
N−1∑
n=0

e iQna

|SN(Q)| =
sin(NQa/2)

sin(Qa/2)

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.
~Rn = na, thus for N unit cells

Which has been evaluated previ-
ously as and leads to the Laue con-
dition for diffraction. Looking at
the regime where the Laue condid-
ion is not exactly fulfilled

Q = (h + ξ)a∗
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Lattice sum in 1D

This lattice sum simplifies to

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

=
sin(N[h + ξ]π)

sin([h + ξ]π)

the numerator can be simplified as

sin(Nπ[h + ξ]) = �����sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

the peak height can be estimated for small ξ as

|SN(Q)| =
sin(Nπξ)

sin(πξ)
≈ Nπξ

πξ
→ N as ξ → 0

and the half width measured at the first minimum of the lattice sum

|SN(Q)| → 0, Nπξ = π, ξ1/2 ≈
1

2N
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Lattice sum in 1D

the peak area can be obtained by integration

∫ +1/2N

−1/2N
|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)
dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξ
dξ

= N

∫ +1/2N

−1/2N
dξ = N

[
ξ
∣∣∣+1/2N

−1/2N
= 1

for very large N, the lattice sum approaches a delta function and since
Q = [h + ξ]a∗ we have

|SN(ξ)| → δ(ξ)

ξ =
Q − ha∗

a∗

=
Q − Gh

a∗

|SN(Q)| → a∗
∑
Gh

δ(Q − Gh)

=
N−1∑
n=0

e iQna

since δ(a∗ξ) = δ(ξ)/a∗
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−1/2N

Nπξ

πξ
dξ

= N

∫ +1/2N

−1/2N
dξ = N

[
ξ
∣∣∣+1/2N

−1/2N
= 1

for very large N, the lattice sum approaches a delta function and since
Q = [h + ξ]a∗ we have

|SN(ξ)| → δ(ξ) ξ =
Q − ha∗

a∗
=

Q − Gh

a∗

|SN(Q)| → a∗
∑
Gh

δ(Q − Gh) =
N−1∑
n=0

e iQna

since δ(a∗ξ) = δ(ξ)/a∗
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Lattice sum modulus

the 1D modulus squared

in 2D, with N1×N2 = N unit
cells

and similarly in 3D

|SN(Q)|2 → Na∗
∑
Gh

δ(Q − Gh)

∣∣∣SN(~Q)
∣∣∣2 → (N1a

∗
1)(N2a

∗
2)
∑
~Ghk

δ(~Q − ~Ghk)

= NA∗
∑
~G

δ(~Q − ~Ghk)

∣∣∣SN(~Q)
∣∣∣2 → NV ∗c

∑
~Ghkl

δ(~Q − ~Ghkl)
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Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction
is derived by assuming specular re-
flection from parallel planes sepa-
rated by a distance d .

The ray reflecting from the deeper
plane travels an extra distance
2d sin θ

If there is to be constructive in-
terference, this additional distance
must corresponde to an integern
number of wavelengths and we get
the Bragg condition
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Laue condition

The Laue condition states that the
scattering vector must be equal to
a reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=
2π

d

2d sin θ =
2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k

k

Q

2π

d

Thus the Bragg and Laue condi-
tions are equivalent
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

Must show that for each point in
reciprocal space, there exists a set
of planes in the real space lattice
such that:

~Ghkl is perpendicular to the planes
with Miller indices (hkl) and

|~Ghkl | =
2π

dhkl
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The plane with Miller indices (hkl)
intersects the three basis vectors of
the lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can be
expressed as a linear combination of
two non-parallel vectors, ~v1 and ~v2

~v1 =
~a3
l
−
~a1
h

, ~v2 =
~a1
h
−
~a2
k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·
(

(ε2 − ε1)
~a1
h
− ε2

~a2
k

+ ε1
~a3
l

)
= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The spacing between planes (hkl) is
simply given by the distance from
the origin to the plane along a nor-
mal vector

This can be computed as the pro-
jection of any vector which con-
nects the origin to the plane onto
the unit vector in the ~Ghkl direc-
tion. In this case, we choose, ~a1/h

Ĝhkl =
~Ghkl

|~Ghkl |

Ĝhkl ·
~a1
h

=
(h~a∗1 + k~a∗2 + l~a∗3)

|~Ghkl |
·
~a1
h

=
2π

|~Ghkl |
= dhkl
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