Today's Outline - February 25, 2020

Today's Outline - February 25, 2020

- Information about:

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project
- Lattice \& basis functions

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project
- Lattice \& basis functions
- Reciprocal lattice for FCC

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor
- Ewald construction

Today's Outline - February 25, 2020

- Information about:
(a) Final presentation
(b) Final project
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor
- Ewald construction

Homework Assignment \#03:
Chapter 3:1,3,4,6,8
due Thursday, February 27, 2020

Final presentation

1. Choose paper for presentation

Final presentation

1. Choose paper for presentation
2. Clear it with me!

Final presentation

1. Choose paper for presentation
2. Clear it with me!
3. Do some background research on the technique

Final presentation

1. Choose paper for presentation
2. Clear it with me!
3. Do some background research on the technique
4. Prepare a 15 minute presentation

Final presentation

1. Choose paper for presentation
2. Clear it with me!
3. Do some background research on the technique
4. Prepare a 15 minute presentation
5. Be ready for questions!

Final project

1. Come up with a potential experiment

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation
3. Clear it with me!

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation
3. Clear it with me!
4. Find appropriate beamline(s) and if needed contact the beamline scientists (they are used to it)

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation
3. Clear it with me!
4. Find appropriate beamline(s) and if needed contact the beamline scientists (they are used to it)
5. Lay out proposed experiment (you can ask for help!)

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation
3. Clear it with me!
4. Find appropriate beamline(s) and if needed contact the beamline scientists (they are used to it)
5. Lay out proposed experiment (you can ask for help!)
6. Make sure to give reasonable answers forall the questions

Final project

1. Come up with a potential experiment
2. Make sure it is a different technique than your final presentation
3. Clear it with me!
4. Find appropriate beamline(s) and if needed contact the beamline scientists (they are used to it)
5. Lay out proposed experiment (you can ask for help!)
6. Make sure to give reasonable answers forall the questions
7. Put me as one of the investigators of the proposal

Scattering from ordered crystals

Liquid scattering and small angle scattering provide structural information about highly disordered systems and long length scales, respectively.

Scattering from ordered crystals

Liquid scattering and small angle scattering provide structural information about highly disordered systems and long length scales, respectively.

Another aspect of kinematical scattering is what is obtained from ordered crystalline materials.

Scattering from ordered crystals

Liquid scattering and small angle scattering provide structural information about highly disordered systems and long length scales, respectively.

Another aspect of kinematical scattering is what is obtained from ordered crystalline materials.

In this case, the distances probed are similar to those in liquid scattering but the sample has an ordered lattice which results in very prominent diffraction peaks separated by ranges with zero scattered intensity.

Scattering from ordered crystals

Liquid scattering and small angle scattering provide structural information about highly disordered systems and long length scales, respectively.

Another aspect of kinematical scattering is what is obtained from ordered crystalline materials.

In this case, the distances probed are similar to those in liquid scattering but the sample has an ordered lattice which results in very prominent diffraction peaks separated by ranges with zero scattered intensity.

We will now proceed to develop a model for this kind of scattering starting with some definitions in 2D space.

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

non-primitive

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

non-primitive

non-conventional

More about lattice vectors

sometimes conventional axes...

More about lattice vectors

sometimes conventional axes...
...are not primitive

Miller indices

planes designated (hk), intercept the unit cell axes at

$$
\frac{a_{1}}{h}, \quad \frac{a_{2}}{k}
$$

Miller indices

Miller indices

planes designated (hk), intercept the unit cell axes at

$$
\frac{a_{1}}{h}, \quad \frac{a_{2}}{k}
$$

for a lattice with orthogonal unit vectors

$$
\frac{1}{d_{h k}^{2}}=\frac{h^{2}}{a_{1}^{2}}+\frac{k^{2}}{a_{2}^{2}}
$$

Reciprocal lattice

Reciprocal lattice

$\vec{a}_{1}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{2} \times \vec{a}_{3} \quad \vec{a}_{2}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{3} \times \vec{a}_{1} \quad \vec{a}_{3}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}$

Reciprocal lattice

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)
\end{aligned}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)=\mathcal{C}(x)
\end{aligned}
$$

Scattering amplitude

$$
F^{c r y s t a l}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}
$$

Scattering amplitude

$$
F^{\text {crystal }}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$.

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\vec{Q} \cdot \vec{R}_{n}=2 \pi m, \quad m=\text { integer }
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right)
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m \\
& \therefore \vec{Q}=\vec{G}_{h k l}
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}
$$

$$
\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is
$v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}$
$\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}
$$

$$
\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
$$

$$
=\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
v_{c} & =\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
\vec{a}_{1}^{*} & =\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x}) \\
& =\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right) \\
\vec{a}_{2}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right) \\
\vec{a}_{3}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

which is a body-centered cubic lattice

The volume of the unit cell is
$v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}$
$\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})$
$=\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)$
$\vec{a}_{2}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right)$
$\vec{a}_{3}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

$$
S_{N}(\vec{Q})=\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
S_{N}(\vec{Q})=\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Which has been evaluated previously as

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

Which has been evaluated previously as

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

$$
\vec{R}_{n}=n a, \text { thus for } N \text { unit cells }
$$

Which has been evaluated previously as and leads to the Laue condition for diffraction. Looking at the regime where the Laue condidion is not exactly fulfilled

$$
Q=(h+\xi) a^{*}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

$$
\vec{R}_{n}=n a, \text { thus for } N \text { unit cells }
$$

Which has been evaluated previously as and leads to the Laue condition for diffraction. Looking at the regime where the Laue condidion is not exactly fulfilled

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}
$$

$$
Q=(h+\xi) a^{*}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\sin (N \pi[h+\xi])=\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi)
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)}
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi}
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

and the half width measured at the first minimum of the lattice sum

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

and the half width measured at the first minimum of the lattice sum

$$
\left|S_{N}(Q)\right| \rightarrow 0
$$

Lattice sum in 1D

This lattice sum simplifies to

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

the numerator can be simplified as

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi \hbar) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

the peak height can be estimated for small ξ as

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

and the half width measured at the first minimum of the lattice sum

$$
\left|S_{N}(Q)\right| \rightarrow 0, \quad N \pi \xi=\pi, \quad \xi_{1 / 2} \approx \frac{1}{2 N}
$$

Lattice sum in 1D

the peak area can be obtained by integration

Lattice sum in 1D

the peak area can be obtained by integration

$$
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi=\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi=\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}\right.
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi)
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi)
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)=\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

for very large N, the lattice sum approaches a delta function and since $Q=[h+\xi] a^{*}$ we have

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)=\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

since $\delta\left(a^{*} \xi\right)=\delta(\xi) / a^{*}$

Lattice sum modulus

the 1 D modulus squared

Lattice sum modulus

the 1 D modulus squared

$$
\left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
$$

Lattice sum modulus

the 1 D modulus squared

$$
\left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum modulus

the 1 D modulus squared

$$
\begin{aligned}
& \left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
& \left|S_{N}(\vec{Q})\right|^{2} \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}_{h k}} \delta\left(\vec{Q}-\vec{G}_{h k}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}_{h k}} \delta\left(\vec{Q}-\vec{G}_{h k}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h k}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}_{h k}} \delta\left(\vec{Q}-\vec{G}_{h k}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h k}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells
and similarly in 3D

Lattice sum modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}_{h k}} \delta\left(\vec{Q}-\vec{G}_{h k}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h k}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow N V_{c}^{*} \sum_{\vec{G}_{h k l}} \delta\left(\vec{Q}-\vec{G}_{h k l}\right)
\end{aligned}
$$

and similarly in 3D
in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Bragg condition

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

If there is to be constructive interference, this additional distance must corresponde to an integern number of wavelengths and we get the Bragg condition

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

If there is to be constructive interference, this additional distance must corresponde to an integern number of wavelengths and we get the Bragg condition

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\vec{Q}=\overrightarrow{G_{n k}}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta
\end{aligned}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}=\lambda
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}=\lambda
$$

Thus the Bragg and Laue conditions are equivalent

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl)

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl) and

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl) and

$$
\left|\vec{G}_{h k l}\right|=\frac{2 \pi}{d_{h k l}}
$$

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l
Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\vec{v}_{1}=\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\vec{v}_{1}=\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}, \quad \vec{v}_{2}=\frac{\vec{a}_{1}}{h}-\frac{\vec{a}_{2}}{k}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}, \quad \vec{v}_{2}=\frac{\vec{a}_{1}}{h}-\frac{\vec{a}_{2}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}, \quad \vec{v}_{2}=\frac{\vec{a}_{1}}{h}-\frac{\vec{a}_{2}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\vec{G}_{h k l} \cdot \vec{v}=\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right)
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}, \quad \vec{v}_{2}=\frac{\vec{a}_{1}}{h}-\frac{\vec{a}_{2}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{G}_{h k l} \cdot \vec{v} & =\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right) \\
& =2 \pi\left(\epsilon_{2}-\epsilon_{1}-\epsilon_{2}+\epsilon_{1}\right)=0
\end{aligned}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}-\frac{\vec{a}_{1}}{h}, \quad \vec{v}_{2}=\frac{\vec{a}_{1}}{h}-\frac{\vec{a}_{2}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{G}_{h k l} \cdot \vec{v} & =\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right) \\
& =2 \pi\left(\epsilon_{2}-\epsilon_{1}-\epsilon_{2}+\epsilon_{1}\right)=0
\end{aligned}
$$

Thus $\vec{G}_{h k l}$ is indeed normal to the plane with Miller indices (hkl)

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}=\frac{2 \pi}{\left|\vec{G}_{h k l}\right|}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}=\frac{2 \pi}{\left|\vec{G}_{h k l}\right|}=d_{h k l}
$$

