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Scattering from molecules

From the atomic form factor, we
would like to abstract to the next
level of complexity, a molecule (we
will leave crystals for Chapter 5).

Fmol(~Q) =
∑
j

fj(~Q)e i
~Q·~r

As an example take the CF4

molecule

We have the following relation-
ships:

|OA|

= |OB| = |OC | = |OD| = 1

OA = OO ′ + O ′A

OB = OO ′ + O ′B

OA · OD = 1 · 1 · cos u = −z
= OA · OB
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The CF4 scattering factor

− z = (OO ′ + O ′A) · (OO ′ + O ′B)

= z2 + 0 + 0 + O ′A · O ′B
= z2 + (O ′A)2 cos(120◦)

= z2 + (1− z2) cos(120◦)

= z2 − 1

2
(1− z2)

0 = 3z2 + 2z − 1

z =
1

3
u = cos−1(−z) = 109.5◦ but from the triangle OO ′A

(O ′A)2 = 1− z2

Fmol
± = f C (Q) + f F (Q)

[
3e∓iQR/3 + e±iQR

]
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The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]

|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4, its orientationally averaged
structure factor, and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]
|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4,

its orientationally averaged
structure factor, and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]
|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4, its orientationally averaged
structure factor,

and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]
|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4, its orientationally averaged
structure factor, and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]
|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4, its orientationally averaged
structure factor, and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The CF4 scattering factor

Fmol
± = f C (Q)+f F (Q)

[
3e∓iQR/3+e±iQR

]
|Fmol
± |2 = |f C |2+10|f F |2+6|f F |2 cos(QR/3)+2f C f F [3 cos(QR/3)+cos(QR)]

|Fmol |2 = |f C |2+4|f F |2+8f C f F
sin(QR)

QR
+12|f F |2

sin(Q
√

8/3R)

Q
√

8/3R

The plot shows the structure factor
of CF4, its orientationally averaged
structure factor, and the form fac-
tor factor of Mo which has the same
number of electrons as CF4

The logarithmic plot shows the
spherically averaged structure fac-
tor compared to the inelastic scat-
tering for CF4

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 4 / 23



The radial distribution function

Ordered 2D crystal Amorphous solid or liquid

Take a circle (sphere) of radius r and thickness dr and count the number
of atom centers lying within the ring. Then expand the ring radius by dr
to map out the radial distribution function g(r)
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Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by
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Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short
range order term.

I SRO(~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ] e i
~Q·(~rn−~rm)dV

When we average over all choices of origin in the liquid, 〈ρn(~rnm)〉 → ρ(~r)
and the sum simplifies to N giving:

I SRO(~Q) = Nf (~Q)2 + Nf (~Q)2

∫
V

[ρ(~r)− ρat ] e i
~Q·~rdV

Performing an orientational average results in

I SRO(~Q) = Nf (~Q)2 + Nf (~Q)2

∫ ∞
0

4πr2 [ρ(r)− ρat ]
sinQr

Qr
dr
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S(Q) - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure
factor, S(Q).

S(Q) =
I SRO(~Q)

Nf (Q)2
= 1 +

4π

Q

∫ ∞
0

r [ρ(r)− ρat ] sin(Qr)dr

When Q → ∞, the short wave-
length limit, 1/Q → 0 eliminates
all dependence on the interparticle
correlations and S(Q)→ 1.

When Q → 0, i.e. the long wave-
length limit, sin(Qr)/Q → r and
S(Q) is dominated by the density
fluctuations in the system

We can rewrite the structure factor equation

Q [S(Q)− 1] =

∫ ∞
0

4πr [ρ(r)− ρat ] sin(Qr)dr =

∫ ∞
0
H(r) sin(Qr)dr

Which is the sine Fourier Transform of the deviation of the atomic density
from its average, H(r) = 4πr [g(r)− 1]
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Radial distribution function

We can invert the Fourier Transform to obtain

H(r) =
2

π

∫ ∞
0

Q [S(Q)− 1] sin(Qr)dQ

and thus the radial distribution function can be obtained from the
structure factor (an experimentally measureable quantity).

g(r) = 1 +
1

2π2rρat

∫ ∞
0

Q [S(Q)− 1] sin(Qr)dQ

This formalism holds for both non-crystalline solids and liquids, even
though inelastic scattering dominates in the latter.

The relation between radial distribution function and structure factor can
be extended to multi-component systems where g(r) → gij(r) and
S(Q) → Sij(Q).
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Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown
that there is short range order which leads to the phenomenon of
supercooling.

“Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids”,
G.W. Lee et al. Phys. Rev. Lett 93, 037802 (2004).
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Water dynamics

Liquid scattering can also be used to study dynamics

In this article, the authors mea-
sured the liquid scattering as a
function of both momentum, Q,
and energy, E , transfer by using
analyzers set for a specific en-
ergy (21.747 keV) but varying Q
and then scanning the incident
energy at fixed incident angle

The Van Hoff function can be obtained by a double Fourier transform

g(r , t)− 1 =
1

2ρπ2r

∫ ∫
e iωt sin(Qr)QS(Q,E )dQ dE

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Water dynamics

The peak below 1.5
Årepresents the self mo-
tion of the central atom
while the data at longer
distances represents the
collective motions of two
different atoms, in this
case the oxygens

The first and second peaks are highly coupled in space and time and
merge within 0.8 ps. This behavior is different from liquid metals and
leads to the viscosity of water.

“Seeing real-space dynamics of liquid water through inelastic x-ray scattering,” T. Iwashita et al. Sci. Adv. 3, e1603079 (2017).
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Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which
becomes important at small Q.

I SAXS(~Q) = f 2
∑
n

∫
V
ρate

i ~Q·(~rn−~rm)dVm

= f 2
∑
n

e i
~Q·~rn

∫
V
ρate

−i ~Q·~rmdVm

= f 2

∫
V
ρate

i ~Q·~rndVn

∫
V
ρate

−i ~Q·~rmdVm

=

∣∣∣∣∫
V
ρsle

i ~Q·~rdV

∣∣∣∣2
Where we have assumed sufficient averaging and introduced ρsl = f ρat .
This final expression looks just like an atomic form factor but the charge
density that we consider here is on a much longer length scale than an
atom.
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The SAXS experiment
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Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

Assume that the scattering length density of each identical particle
(molecule) is given by ρsl ,p and the scattering length density of the solvent
is ρsl ,0.

I SAXS(~Q) =

∣∣∣∣∣
∫
Vp

ρsle
i ~Q·~rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)2

∣∣∣∣∣
∫
Vp

e i
~Q·~rdVp

∣∣∣∣∣
2

If we introduce the single-particle
form factor F(~Q):

F(~Q) =
1

Vp

∫
Vp

e i
~Q·~rdVp

I SAXS(~Q) = ∆ρ2V 2
p |F(~Q)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the
morphology of the particle (size and shape).
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Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 16 / 23



Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 16 / 23



Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 16 / 23



Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]

≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x

C. Segre (IIT) PHYS 570 - Spring 2018 February 18, 2020 16 / 23



Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind
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Scattering from a sphere

I (Q) = ∆ρ2V 2
p

∣∣∣∣3J1(QR)
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Guinier analysis

In the long wavelength limit QR → 0 we can approximate the scattering
factor with the first terms of the sum

F(Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · ·

− QR

(
1− Q2R2

2
+

Q4R4

24
− · · ·

)]
this simplifies to F(Q) ≈ 1− Q2R2

10
and

I SAXS(Q) ≈ ∆ρ2V 2
p

[
1− Q2R2

10

]2

≈ ∆ρ2V 2
p

[
1− Q2R2

5

]
≈ ∆ρ2V 2

p e
−Q2R2/5, QR � 1
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Guinier analysis

In the long wavelength limit
(QR → 0), the form factor be-
comes

F(Q) ≈ 1− Q2R2

10

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2/5

and the initial slope of the log(I ) vs
Q2 plot is −R2/5

In terms of the radius of gyration,
Rg , which for a sphere is given by√

3
5R

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3
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Q
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Calculation of Rg

R2
g =

1

Vp

∫
Vp

r2dVp

=

∫
Vp
ρsl ,p(~r)r2dVp∫

Vp
ρsl ,p(~r)dVp

In terms of the scattering length den-
sity, we have

after orientational averaging this ex-
pression can be used to extract Rg from
experimental data using

I SAXS1 (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3

this expression holds for uniform and non-uniform densities
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Porod analysis

In the short wavelength limit
(QR � 1), the form factor for a
sphere can be approximated

F(Q) = 3

[
sin(QR)

Q3R3
− cos(QR)

Q2R2

]
≈ 3

[
−cos(QR)

Q2R2

]
I (Q) = 9∆ρ2V 2

p

[
−cos(QR)

Q2R2

]2

= 9∆ρ2V 2
p

〈
cos2(QR)

〉
Q4R4

=
9∆ρ2V 2

p

Q4R4

(
1

2

)
I (Q) =

2π∆ρ2

Q4
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Shape effect on scattering

The shape of the particle will
have a significant effect on
the SAXS since the form fac-
tor is derived from an integral
over the particle volume, Vp.

If the particle is not spher-
ical, then its “dimensional-
ity” is not 3 and this will af-
fect the form factor and in-
troduce a different power law
in the Porod regime.
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Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed
and dilute,

more complex models must be used when the particles are
polydispersed with a distribution function D(R)

I SAXS(Q) = ∆ρ2

∫ ∞
0

D(R)Vp(R)2|F(Q,R)|2 dR

the Schulz function is com-
monly used to model D(R)
as it goes to a delta function
as the percentage polydisper-
sivity, p → 0

p = 0
p = 10%
p = 20%
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