Today's Outline - February 13, 2020

Today's Outline - February 13, 2020

- Elliptical lenses

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates
- Polycapillaries

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates
- Polycapillaries
- Scattering review

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates
- Polycapillaries
- Scattering review
- Kinematical scattering

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates
- Polycapillaries
- Scattering review
- Kinematical scattering

Homework Assignment \#02:
Problems on Blackboard
due Tuesday, February 18, 2020

Today's Outline - February 13, 2020

- Elliptical lenses
- Zone plates
- Polycapillaries
- Scattering review
- Kinematical scattering

Homework Assignment \#02:
Problems on Blackboard
due Tuesday, February 18, 2020

APS Visit:
10-BM: Friday, April 24, 2020

Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of thin-walled hollow tubes which are $>65 \%$ empty space

Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of thin-walled hollow tubes which are $>65 \%$ empty space

They rely on total external reflection to guide x-rays through the capillary to a final focus with gains per unit area of up to ~ 1000

Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of thin-walled hollow tubes which are $>65 \%$ empty space

They rely on total external reflection to guide x-rays through the capillary to a final focus with gains per unit area of up to ~ 1000

F.A. Hofmann et al., "Focusing of synchrotron radiation with polycapillary optics," Nuclear Instrum. Meth. B 133, 145-150 (1997).

Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of thin-walled hollow tubes which are $>65 \%$ empty space

They rely on total external reflection to guide x-rays through the capillary to a final focus with gains per unit area of up to ~ 1000

F.A. Hofmann et al., "Focusing of synchrotron radiation with polycapillary optics," Nuclear Instrum. Meth. B 133, 145-150 (1997).

Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of thin-walled hollow tubes which are $>65 \%$ empty space
They rely on total external reflection to guide x-rays through the capillary to a final focus with gains per unit area of up to ~ 1000

F.A. Hofmann et al., "Focusing of synchrotron radiation with polycapillary optics," Nuclear Instrum. Meth. B 133, 145-150 (1997).

Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies is reduced because of critical angle restrictions

Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies is reduced because of critical angle restrictions

One way to solve this is to coat the inside of the capillaries with heavy element compounds using atomic layer deposition

Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies is reduced because of critical angle restrictions

One way to solve this is to coat the inside of the capillaries with heavy element compounds using atomic layer deposition

Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies is reduced because of critical angle restrictions

One way to solve this is to coat the inside of the capillaries with heavy element compounds using atomic layer deposition

M.A. Popecki et al., "Development of polycapillary x-ray optics for synchrotron spectroscopy," Proc. SPIE 9588, 95880D (2015).

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?
The two rays shown must be in phase when they reach the focal point and so we can write

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?
The two rays shown must be in phase when they reach the focal point and so we can write

$$
f=y(1-\delta)+\sqrt{(f-y)^{2}+x^{2}}
$$

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?
The two rays shown must be in phase when they reach the focal point and so we can write

$$
\begin{array}{r}
f=y(1-\delta)+\sqrt{(f-y)^{2}+x^{2}} \\
(f-y+\delta y)^{2}=(f-y)^{2}+x^{2}
\end{array}
$$

Elliptical lens surface

In calculating the optimal surface profile for a refractive lens, an important approximation was made which resulted in a parabolic surface

The assumption was made that only a small portion of the lens area along the axis was illuminated

What happens if we lift this restriction?
The two rays shown must be in phase when they reach the focal point and so we can write

$$
\begin{array}{r}
f=y(1-\delta)+\sqrt{(f-y)^{2}+x^{2}} \\
(f-y+\delta y)^{2}=(f-y)^{2}+x^{2} \\
2 f \delta y-\left(2 \delta-\delta^{2}\right) y^{2}=x^{2}
\end{array}
$$

Elliptical lens surface

Ideal surface
Ellipse

Elliptical lens surface

Ideal surface
Ellipse

$$
1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}
$$

$$
0=x^{2}+\left(2 \delta-\delta^{2}\right) y^{2}-2 f \delta y
$$

Elliptical lens surface

Ideal surface
Ellipse

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Elliptical lens surface

Ideal surface

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Comparing, we have

Elliptical lens surface

Ideal surface

$$
0=x^{2}+\left(2 \delta-\delta^{2}\right) y^{2}-2 f \delta y
$$

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Comparing, we have

$$
\frac{a^{2}}{b^{2}}=\left(2 \delta-\delta^{2}\right)
$$

Elliptical lens surface

Ideal surface

$$
\begin{aligned}
& \text { Ideal surface } \\
& \\
& \begin{array}{rl}
1 & =\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
0=x^{2}+\left(2 \delta-\delta^{2}\right) y^{2}-2 f \delta y & 0
\end{array} \\
&
\end{aligned}
$$

Comparing, we have

$$
\frac{a^{2}}{b^{2}}=\left(2 \delta-\delta^{2}\right), \quad f \delta=\frac{a^{2}}{b}
$$

Elliptical lens surface

Ideal surface

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Comparing, we have

$$
\begin{aligned}
& \frac{a^{2}}{b^{2}}=\left(2 \delta-\delta^{2}\right), \quad f \delta=\frac{a^{2}}{b} \\
& a=f \sqrt{\frac{\delta}{2-\delta}},
\end{aligned}
$$

Elliptical lens surface

Ideal surface

$$
0=x^{2}+\left(2 \delta-\delta^{2}\right) y^{2}-2 f \delta y
$$

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Comparing, we have

$$
\begin{array}{ll}
\frac{a^{2}}{b^{2}}=\left(2 \delta-\delta^{2}\right), & f \delta=\frac{a^{2}}{b} \\
a=f \sqrt{\frac{\delta}{2-\delta}}, & b=\frac{f}{2-\delta}
\end{array}
$$

Elliptical lens surface

Ideal surface

$$
\begin{aligned}
& 1=\frac{x^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}} \\
& 0=x^{2}+\frac{a^{2}}{b^{2}} y^{2}-2 \frac{a^{2}}{b} y
\end{aligned}
$$

Ellipse

Comparing, we have

$$
\begin{array}{ll}
\frac{a^{2}}{b^{2}}=\left(2 \delta-\delta^{2}\right), & f \delta=\frac{a^{2}}{b} \\
a=f \sqrt{\frac{\delta}{2-\delta}}, & b=\frac{f}{2-\delta}
\end{array}
$$

The ideal surface for a thick lens is an ellipse

How to make a Fresnel lens

The ideal refracting lens has an elliptical shape but this is impractical to make. Assuming the parabolic approximation:

How to make a Fresnel lens

The ideal refracting lens has an elliptical shape but this is impractical to make. Assuming the parabolic approximation:

$$
h(x)=\Lambda\left(\frac{x}{\sqrt{2 \lambda_{o} f}}\right)^{2}
$$

How to make a Fresnel lens

The ideal refracting lens has an elliptical shape but this is impractical to make. Assuming the parabolic approximation:

$$
h(x)=\Lambda\left(\frac{x}{\sqrt{2 \lambda_{o} f}}\right)^{2}
$$

when $h(x)=100 \wedge \sim 1000 \mu \mathrm{~m}$

How to make a Fresnel lens

The ideal refracting lens has an elliptical shape but this is impractical to make. Assuming the parabolic approximation:

$$
h(x)=\Lambda\left(\frac{x}{\sqrt{2 \lambda_{o} f}}\right)^{2}
$$

when $h(x)=100 \wedge \sim 1000 \mu \mathrm{~m}$

$$
x=10 \sqrt{2 \lambda_{o} f} \sim 100 \mu \mathrm{~m}
$$

How to make a Fresnel lens

The ideal refracting lens has an elliptical shape but this is impractical to make. Assuming the parabolic approximation:

$$
h(x)=\Lambda\left(\frac{x}{\sqrt{2 \lambda_{o} f}}\right)^{2}
$$

when $h(x)=100 \wedge \sim 1000 \mu \mathrm{~m}$

$$
x=10 \sqrt{2 \lambda_{o} f} \sim 100 \mu \mathrm{~m}
$$

aspect ratio too large for a stable structure and absorption would be too large!

How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.

How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.

This material can be removed and the remaining material collapsed to produce a Fresnel lens which has the same optical properties as the parabolic lens as long as $f \gg N \wedge$ where N is the number of zones.

Fresnel lens dimensions

The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

Fresnel lens dimensions

The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$
\nu=\frac{h(x)}{\Lambda}
$$

Fresnel lens dimensions

The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$
\nu=\frac{h(x)}{\Lambda} \quad \xi=\frac{x}{\sqrt{2 \lambda_{o} f}}
$$

Fresnel lens dimensions

The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$
\nu=\frac{h(x)}{\Lambda} \quad \xi=\frac{x}{\sqrt{2 \lambda_{o} f}}
$$

Since $\nu=\xi^{2}$, the position of the $N^{t h}$ zone is $\xi_{N}=\sqrt{N}$ and the scaled width of the $N^{t h}$ (outermost) zone is

Fresnel lens dimensions

The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$
\nu=\frac{h(x)}{\Lambda} \quad \xi=\frac{x}{\sqrt{2 \lambda_{o} f}}
$$

Since $\nu=\xi^{2}$, the position of the $N^{t h}$ zone is $\xi_{N}=\sqrt{N}$ and the scaled width of the $N^{t h}$ (outermost) zone is

$$
\Delta \xi_{N}=\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1}
$$

Fresnel lens dimensions

$$
\Delta \xi_{N}=\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1}
$$

Fresnel lens dimensions

$$
\begin{aligned}
\Delta \xi_{N} & =\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1} \\
& =\sqrt{N}\left(1-\sqrt{1-\frac{1}{N}}\right)
\end{aligned}
$$

Fresnel lens dimensions

$$
\begin{aligned}
\Delta \xi_{N} & =\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1} \\
& =\sqrt{N}\left(1-\sqrt{1-\frac{1}{N}}\right) \\
& \approx \sqrt{N}\left(1-\left[1-\frac{1}{2 N}\right]\right)
\end{aligned}
$$

Fresnel lens dimensions

$$
\begin{aligned}
\Delta \xi_{N} & =\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1} \\
& =\sqrt{N}\left(1-\sqrt{1-\frac{1}{N}}\right) \\
& \approx \sqrt{N}\left(1-\left[1-\frac{1}{2 N}\right]\right) \\
\Delta \xi_{N} & \approx \frac{1}{2 \sqrt{N}}
\end{aligned}
$$

Fresnel lens dimensions

$$
\begin{aligned}
\Delta \xi_{N} & =\xi_{N}-\xi_{N-1}=\sqrt{N}-\sqrt{N-1} \\
& =\sqrt{N}\left(1-\sqrt{1-\frac{1}{N}}\right) \\
& \approx \sqrt{N}\left(1-\left[1-\frac{1}{2 N}\right]\right) \\
\Delta \xi_{N} & \approx \frac{1}{2 \sqrt{N}}
\end{aligned}
$$

The diameter of the entire lens is thus

$$
2 \xi_{N}=2 \sqrt{N}=\frac{1}{\Delta \xi_{N}}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}}
$$

$$
d_{N}=2 \xi_{N}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\begin{gathered}
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}} \\
d_{N}=2 \xi_{N}=\frac{\sqrt{2 \lambda_{o} f}}{\Delta \xi_{N}}
\end{gathered}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\begin{gathered}
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}} \\
d_{N}=2 \xi_{N}=\frac{\sqrt{2 \lambda_{o} f}}{\Delta \xi_{N}}=2 \sqrt{N} \sqrt{2 \lambda_{o} f}=\sqrt{2 N \lambda_{o} f}
\end{gathered}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\begin{gathered}
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}} \\
d_{N}=2 \xi_{N}=\frac{\sqrt{2 \lambda_{o} f}}{\Delta \xi_{N}}=2 \sqrt{N} \sqrt{2 \lambda_{o} f}=\sqrt{2 N \lambda_{o} f}
\end{gathered}
$$

If we take

$$
\begin{aligned}
\lambda_{o} & =1 \AA=1 \times 10^{-10} \mathrm{~m} \\
f & =50 \mathrm{~cm}=0.5 \mathrm{~m} \\
N & =100
\end{aligned}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\begin{gathered}
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}} \\
d_{N}=2 \xi_{N}=\frac{\sqrt{2 \lambda_{o} f}}{\Delta \xi_{N}}=2 \sqrt{N} \sqrt{2 \lambda_{o} f}=\sqrt{2 N \lambda_{o} f}
\end{gathered}
$$

If we take

$$
\begin{aligned}
\lambda_{o} & =1 \AA=1 \times 10^{-10} \mathrm{~m} \\
f & =50 \mathrm{~cm}=0.5 \mathrm{~m} \\
N & =100
\end{aligned}
$$

$$
\Delta x_{N}=5 \times 10^{-7} \mathrm{~m}=500 \mathrm{~nm}
$$

Fresnel lens example

In terms of the unscaled variables

$$
\begin{gathered}
\Delta x_{N}=\Delta \xi_{N} \sqrt{2 \lambda_{o} f}=\sqrt{\frac{\lambda_{o} f}{2 N}} \\
d_{N}=2 \xi_{N}=\frac{\sqrt{2 \lambda_{o} f}}{\Delta \xi_{N}}=2 \sqrt{N} \sqrt{2 \lambda_{o} f}=\sqrt{2 N \lambda_{o} f}
\end{gathered}
$$

If we take

$$
\begin{aligned}
\lambda_{o} & =1 \AA=1 \times 10^{-10} \mathrm{~m} \\
f & =50 \mathrm{~cm}=0.5 \mathrm{~m} \\
N & =100
\end{aligned}
$$

$$
\Delta x_{N}=5 \times 10^{-7} \mathrm{~m}=500 \mathrm{~nm} \quad d_{N}=2 \times 10^{-4} \mathrm{~m}=100 \mu \mathrm{~m}
$$

Making a Fresnel zone plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

Making a Fresnel zone plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as $\mathrm{Au} / \mathrm{Si}$ or W/C.

Making a Fresnel zone plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as $\mathrm{Au} / \mathrm{Si}$ or W/C.

This kind of zone plate is not as efficient as a true Fresnel lens would be in the x-ray regime. Nevertheless, efficiencies up to 35% have been achieved.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN.

UNCD SiN

M. Wojick et al., "X-ray zone plates with 25 aspect ratio using a $2-\mu$ m-thick ultrananocrystalline diamond mold," Microsyst. Technol. 20, 2045-2050 (2014).

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ).
M. Wojick et al., "X-ray zone plates with 25 aspect ratio using a $2-\mu$ m-thick ultrananocrystalline diamond mold," Microsyst. Technol. 20, 2045-2050 (2014).

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the
 HSQ layer.
M. Wojick et al., "X-ray zone plates with 25 aspect ratio using a $2-\mu$ m-thick ultrananocrystalline diamond mold," Microsyst. Technol. 20, 2045-2050 (2014).

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN . Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the
 HSQ layer. Reactive ion etch the UNCD to the substrate.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ
UNCD SiN HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

The whole 150 nm diameter zone plate

M. Wojick et al., "X-ray zone plates with 25 aspect ratio using a 2 - μ m-thick ultrananocrystalline diamond mold," Microsyst. Technol. 20, 2045-2050 (2014).

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25 .

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

The whole 150 nm diameter zone plate

Detail view of outer zones

M. Wojick et al., "X-ray zone plates with 25 aspect ratio using a $2-\mu$ m-thick ultrananocrystalline diamond mold," Microsyst. Technol. 20, 2045-2050 (2014).

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\vec{k}^{\prime}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
A(\vec{Q})=-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q})
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

$$
I(\vec{Q})=r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}+e^{-i \vec{Q} \cdot \vec{r}}+1\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

$$
I(\vec{Q})=r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}+e^{-i \vec{Q} \cdot \vec{r}}+1\right)=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

Scattering from many electrons

for many electrons

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

generalizing to a crystal

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to more than two electrons

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Fixed orientation is not the usual case, particularly for solution and small-angle scattering.

Orientation averaging

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{F}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{F}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \boldsymbol{Q} \cdot \vec{r}}\right\rangle
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

$$
\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}
$$

Randomly oriented electrons

$$
\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}
$$

Randomly oriented electrons

$\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.

Randomly oriented electrons

$\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.
When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.
When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

$$
\langle I(\vec{Q})\rangle=2 r_{0}^{2}\left(1+\frac{\sin (Q r)}{Q r}\right)
$$

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.
When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

$$
\langle I(\vec{Q})\rangle=2 r_{0}^{2}\left(1+\frac{\sin (Q r)}{Q r}\right)
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.

$$
f^{0}(\vec{Q})=\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of

$$
f^{0}(\vec{Q})=\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\psi_{1 s}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, \quad a=\frac{a_{0}}{Z-z_{s}}
$$

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.
$\psi_{1 s}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, \quad a=\frac{a_{0}}{Z-z_{s}}$
where z_{s} is a screening correction

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right.
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
u=r
$$

$$
d v=e^{-r(2 / a-i Q)} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{lm}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{lm}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} \\
f_{1 s}^{0}(\vec{Q})= & \frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
& =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c=\sum_{j=1}^{4} a_{j} e^{-b_{j}(Q / 4 \pi)^{2}}+c
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c=\sum_{j=1}^{4} a_{j} e^{-b_{j}(Q / 4 \pi)^{2}}+c
$$

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays
when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays
when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have
with no oscillating structure in the form factor

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

The Compton scattering contains information about the momentum distribution of the electrons in the
 ground state of the atom.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

The Compton scattering contains information about the momentum distribution of the electrons in the ground state of the atom.

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2}
$$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {el }} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$
so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$
so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$
and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {in }} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$ so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$ and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$ so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$ and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

$$
Z_{H e}=2 \quad Z_{A r}=18
$$

