
Today’s Outline - February 13, 2020

• Elliptical lenses
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• Polycapillaries

• Scattering review

• Kinematical scattering
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Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of
thin-walled hollow tubes which are > 65% empty space

They rely on total external reflection to guide x-rays through the capillary
to a final focus with gains per unit area of up to ∼1000

F.A. Hofmann et al., “Focusing of synchrotron radiation with polycapillary optics,” Nuclear Instrum. Meth. B 133, 145-150
(1997).
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Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies
is reduced because of critical angle restrictions

One way to solve this is to coat the inside of the capillaries with heavy
element compounds using atomic layer deposition

M.A. Popecki et al., “Development of polycapillary x-ray optics for synchrotron spectroscopy,” Proc. SPIE 9588, 95880D (2015).
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Elliptical lens surface

In calculating the optimal surface profile for a
refractive lens, an important approximation was
made which resulted in a parabolic surface

The assumption was made that only a small por-
tion of the lens area along the axis was illumi-
nated

What happens if we lift this restriction?

The two rays shown must be in phase when they
reach the focal point and so we can write

f = y(1− δ) +
√

(f − y)2 + x2

(f − y + δy)2 = (f − y)2 + x2

2f δy − (2δ − δ2)y2 = x2

f

y(x)

x
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Elliptical lens surface

Ideal surface

0 = x2 + (2δ − δ2)y2 − 2f δy

Ellipse

1 =
x2

a2
+

(y − b)2

b2

0 = x2 +
a2

b2
y2 − 2

a2

b
y

Comparing, we have

a2

b2
= (2δ − δ2), f δ =

a2

b

a = f

√
δ

2− δ
, b =

f

2− δ

The ideal surface for a thick lens is an ellipse
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How to make a Fresnel lens

The ideal refracting lens has an elliptical
shape but this is impractical to make. As-
suming the parabolic approximation:

h(x) = Λ

(
x√

2λo f

)2

when h(x) = 100Λ ∼ 1000µm

x = 10
√

2λo f ∼ 100µm

aspect ratio too large for a stable structure
and absorption would be too large!
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How to make a Fresnel lens

Λ

2Λ

3Λ

4Λ

5Λ

6Λ

7Λ

Mark off the longitudinal zones (of thickness
Λ) where the waves inside and outside the
material are in phase.

Each block of thickness Λ serves no
purpose for refraction but only attenuates
the wave.

This material can be removed and the
remaining material collapsed to produce
a Fresnel lens which has the same optical
properties as the parabolic lens as long as
f � NΛ where N is the number of zones.
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Fresnel lens dimensions

1

2

3

4

5

6

7 The outermost zones become very small and
thus limit the overall aperture of the zone
plate. The dimensions of outermost zone, N
can be calculated by first defining a scaled
height and lateral dimension

ν =
h(x)

Λ
ξ =

x√
2λo f

Since ν = ξ2, the position of the Nth zone
is ξN =

√
N and the scaled width of the Nth

(outermost) zone is

∆ξN = ξN − ξN−1 =
√
N −

√
N − 1
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Fresnel lens dimensions

1

2

3

4

5

6

7

∆ξN = ξN − ξN−1 =
√
N −

√
N − 1

=
√
N

(
1−

√
1− 1

N

)

≈
√
N

(
1−

[
1− 1

2N

])
∆ξN ≈

1

2
√
N

The diameter of the entire lens is thus

2ξN = 2
√
N =

1

∆ξN
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Fresnel lens example

In terms of the unscaled variables

∆xN = ∆ξN
√

2λo f

=

√
λo f

2N

dN = 2ξN =

√
2λo f

∆ξN
= 2
√
N
√

2λo f =
√

2Nλo f

If we take

λo = 1Å = 1× 10−10m

f = 50cm = 0.5m

N = 100

∆xN = 5× 10−7m = 500nm dN = 2× 10−4m = 100µm
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Making a Fresnel zone plate

Λ

Λ/2

The specific shape required for a zone plate
is difficult to fabricate, consequently, it
is convenient to approximate the nearly
triangular zones with a rectangular profile.

In practice, since the outermost zones
are very small, zone plates are generally
fabricated as alternating zones (rings for
2D) of materials with a large Z-contrast,
such as Au/Si or W/C.

This kind of zone plate is not as effi-
cient as a true Fresnel lens would be in the
x-ray regime. Nevertheless, efficiencies up
to 35% have been achieved.
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Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline
diamond (UNCD) films on SiN.
Coat with hydrogen silsesquioxane
(HSQ). Pattern and develop the
HSQ layer. Reactive ion etch the
UNCD to the substrate. Plate with
gold to make final zone plate.

The whole 150nm diameter zone
plate

Detail view of outer zones

SiN

UNCD

HSQ

M. Wojick et al., “X-ray zone plates with 25 aspect ratio using a 2-µm-thick ultrananocrystalline diamond mold,” Microsyst.
Technol. 20, 2045-2050 (2014).
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Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple
scattering effects. We begin with the scattering of x-rays from two
electrons.

r

2θ

k

k

2θ

Q

k

k

~Q = (~k − ~k ′)

|~Q| = 2k sin θ =
4π

λ
sin θ

The scattering from the second electron will
have a phase shift of φ = ~Q ·~r .

A(~Q) = −r0
(

1 + e i
~Q·~r
)

I (~Q) = A(~Q)∗A(~Q)

= r20

(
1 + e i

~Q·~r
)(

1 + e−i
~Q·~r
)

I (~Q) = r20

(
1 + e i

~Q·~r + e−i
~Q·~r + 1

)
= 2r20

(
1 + cos(~Q ·~r)

)
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Scattering from many electrons

for many electrons

generalizing to a crystal

A(~Q) = −r0
∑
j

e i
~Q·~rj

A(~Q) = −r0
∑
N

e i
~Q· ~RN

∑
j

e i
~Q·~rj

Since experiments measure I ∝ A2, the phase information is lost. This is a
problem if we don’t know the specific orientation of the scattering system
relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to
more than two electrons
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Two electrons — fixed orientation

The expression

I (~Q) = 2r20

(
1 + cos(~Q ·~r)

)
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as a function of Q is.
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Orientation averaging

A(~Q) = f1 + f2e
i ~Q·~r

I (~Q) = f 21 + f 22 + f1f2e
i ~Q·~r + f1f2e

−i ~Q·~r〈
I (~Q)

〉
= f 21 + f 22 + 2f1f2

〈
e i
~Q·~r
〉

〈
e i
~Q·~r
〉

=

∫
e iQr cos θ sin θdθdφ∫

sin θdθdφ

=
1

4π
2π

∫ π

0
e iQr cos θ sin θdθ

=
2π

4π

(
− 1

iQr

)∫ −iQr

iQr
exdx

=
1

2
2

sin(Qr)

Qr
=

sin(Qr)

Qr

Consider scattering from two
arbitrary electron distribu-
tions, f1 and f2. A(~Q), is
given by

and the intensity, I (~Q), is

if the distance between the
scatterers,~r , remains constant
(no vibrations) but is allowed
to orient randomly in space
and we take ~Q along the z-
axis

substituting x = iQr cos θ and
dx = −iQr sin θdθ〈
I (~Q)

〉
= f 21 +f 22 +2f1f2

sin(Qr)

Qr
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Randomly oriented electrons

〈
I (~Q)

〉
= f 21 +f 22 +2f1f2

sin(Qr)

Qr

Recall that when we had a fixed
orientation of the two electrons,
we had and intensity variation
I (~Q) = 2r20 (1 + cos(Qr)).

When we now replace the two
arbitrary scattering distributions
with electrons (f1, f2 → −r0),
we change the intensity profile
significantly.〈
I (~Q)

〉
= 2r20

(
1 +

sin(Qr)

Qr

)
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When we now replace the two
arbitrary scattering distributions
with electrons (f1, f2 → −r0),
we change the intensity profile
significantly.〈
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Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of r0 of

The second limit can be understood
classically as loss of phase coher-
ence when Q is very large and a
small difference in position results
in an arbitrary change in phase.

ψ1s(r) =
1√
πa3

e−r/a, a =
a0

Z − zs

where zs is a screening correction

f 0(~Q) =

∫
ρ(~r)e i

~Q·~rd~r

=

{
Z for Q→ 0

0 for Q→∞

However, it is better to use
quantum mechanics to calculate
the form factor, starting with a
hydrogen-like atom as an example.
The wave function of the 1s elec-
trons is just
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Hydrogen form factor calculation

Since ρ(r) = |ψ1s(r)|2, the form factor integral becomes

f 01s(~Q) =
1

πa3

∫
e−2r/ae i

~Q·~r r2 sin θdrdθdφ

the integral in φ gives 2π and if we choose ~Q to be along the z direction,
~Q ·~r → Qr cos θ, so

f 01s(~Q) =
1

πa3

∫ ∞
0

2πr2e−2r/a
∫ π

0
e iQr cos θ sin θdθdr

=
1

πa3

∫ ∞
0

2πr2e−2r/a
1

iQr

[
−e iQr cos θ

∣∣∣π
0
dr

=
1

πa3

∫ ∞
0

2πr2e−2r/a
1

iQr

[
e iQr − e−iQr

]
dr

=
1

πa3

∫ ∞
0

2πr2e−2r/a
2 sin(Qr)

Qr
dr
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Form factor calculation

f 01s(~Q) =
1

πa3

∫ ∞
0

2πr2e−2r/a
2 sin(Qr)

Qr
dr

If we write sin(Qr) = Im
[
e iQr

]
then the integral becomes

f 01s(~Q) =
4

a3Q

∫ ∞
0

re−2r/aIm
[
e iQr

]
dr

=
4

a3Q
Im

[∫ ∞
0

re−2r/ae iQrdr

]

this can be integrated by parts with

u = r dv = e−r(2/a−iQ)dr

du = dr v = −e−r(2/a−iQ)

(2/a− iQ)

f 01s(~Q) =
4

a3Q
Im

[
r
e−r(2/a−iQ)

(2/a− iQ)

∣∣∣∣∣
∞

0

+

∫ ∞
0

e−r(2/a−iQ)

(2/a− iQ)
dr

]
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4

a3Q
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r
e−r(2/a−iQ)

(2/a− iQ)

∣∣∣∣∣
∞

0

+

∫ ∞
0

e−r(2/a−iQ)

(2/a− iQ)
dr

]

the first term becomes zero because re−r(2/a−iQ) → 0 as r → 0, the
second is easily integrated

f 01s(~Q) =
4

a3Q
Im

[
− e−r(2/a−iQ)

(2/a− iQ)2

∣∣∣∣∣
∞

0

]
=

4

a3Q
Im

[
1

(2/a− iQ)2

]
=

4

a3Q
Im

[
(2/a + iQ)2

(2/a− iQ)2(2/a + iQ)2

]
=

4

a3Q
Im

[
(2/a)2 + i(4Q/a)− Q2

[(2/a)2 + Q2]2

]

f 01s(~Q)

=
4

a3Q

(a/2)4(4Q/a)

[1 + (Qa/2)2]2
=

1

[1 + (Qa/2)2]2
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1s and atomic form factors

f 01s(~Q) =
1

[1 + (Qa/2)2]2

This partial form factor will vary
with Z due to the Coulomb inter-
action

In principle, one can compute the
full atomic form factors, however,
it is more useful to tabulate the ex-
perimentally measured form factors 0 5

Qa
o
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Two hydrogen atoms

Previously we derived the scat-
tering intensity from two local-
ized electrons both fixed and
randomly oriented to the x-rays

when we now replace the two lo-
calized electrons with hydrogen
atoms, we have, for fixed atoms

and if we allow the hydrogen
atoms to be randomly oriented
we have

with no oscillating structure in
the form factor
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Inelastic scattering

The form factors for all atoms drop
to zero as Q →∞, however, other
processes continue to scatter pho-
tons.

In particular, Compton scattering
becomes dominant.

Compton scattering is an inelastic
process: |~k| 6= |~k ′| and it is also
incoherent.

The Compton scattering contains
information about the momentum
distribution of the electrons in the
ground state of the atom.
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Total atomic scattering

We can now write the total scatter-
ing from an atom as the sum of two
components:

(
dσ

dΩ

)
el

∼ r20 |f (Q)|2(
dσ

dΩ

)
in

∼ r20S(Z ,Q)

recall that f (Q)→ Z as Q → 0

so |f (Q)|2 → Z 2 as Q → 0

and for incoherent scattering we ex-
pect S(Z ,Q)→ Z as Q →∞
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