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Polycapillary optics

A polycapillary is a focusing optic made up of an array of thousands of
thin-walled hollow tubes which are > 65% empty space

F.A. Hofmann et al., “Focusing of synchrotron radiation with polycapillary optics,” Nuclear Instrum. Meth. B 133, 145-150
(1997).
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Polycapillary optics
A polycapillary is a focusing optic made up of an array of thousands of

thin-walled hollow tubes which are > 65% empty space

They rely on total external reflection to guide x-rays through the capillary
to a final focus with gains per unit area of up to ~ 1000
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F.A. Hofmann et al., “Focusing of synchrotron radiation with polycapillary optics,” Nuclear Instrum. Meth. B 133, 145-150
(1997).
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Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies
is reduced because of critical angle restrictions

M.A. Popecki et al., “Development of polycapillary x-ray optics for synchrotron spectroscopy,” Proc. SPIE 9588, 95880D (2015).
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Improving polycapillary optic performance

One drawback of a glass capillary is that the transmission at high energies
is reduced because of critical angle restrictions

One way to solve this is to coat the inside of the capillaries with heavy
element compounds using atomic layer deposition
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Elliptical lens surface

In calculating the optimal surface profile for a
refractive lens, an important approximation was
made which resulted in a parabolic surface

The assumption was made that only a small por-
tion of the lens area along the axis was illumi- f
nated

What happens if we lift this restriction?

The two rays shown must be in phase when they
reach the focal point and so we can write

f=y(l-0)+/(f—y)?+x?
(F—y 4oy =(f—y) +x° -
2f5y — (26 — 6%)y? = x?

C. Segre (lIT) PHYS 570 - Spring 2018 February 13, 2020 4/25



Elliptical lens surface

Ideal surface Ellipse

C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020 5/25



Elliptical lens surface

Ideal surface

0= x>+ (20 — 6)y? — 2fdy

C. Segre (IIT)

PHYS 570 - Spring 2018

February 13, 2020

5/25



Elliptical lens surface

Ideal surface

0= x>+ (20 — 6)y? — 2fdy

C. Segre (lIT)

PHYS 570 - Spring 2018

Ellipse
2 RY:
1_%+U b)
a b?
2 2
a a
0=x>+ ?ﬁ - Fy

February 13, 2020

5/25



Elliptical lens surface

Ideal surface

0= x>+ (20 — 6)y? — 2fdy

Comparing, we have

C. Segre (lIT)

PHYS 570 -

Ellipse
2 RY:
1_%+U b)
a b?
2 2
a a
0=x>+ ?ﬁ - Fy

Spring 2018 February 13, 2020

5/25



Elliptical lens surface

Ideal surface

0= x>+ (20 — 6)y? — 2fdy

Comparing, we have

o = (26 - 52)7

C. Segre (lIT) PHYS 570 - Spring 2018

Ellipse
2 RY:
1_%+U b)
a b?
2 2
a a
0=x>+ ?ﬁ - Fy

February 13, 2020

5/25



Elliptical lens surface

Ideal surface

Ellipse
2 —b 2
1_%+U )
a b?
0 =x2+ (26 — 6%)y? — 2f Sy P
0=x"+ ﬁy - Fy
Comparing, we have
2 2
a 5 a
C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020

5/25



Elliptical lens surface

Ideal surface

Ellipse
2 AV
=% (y = b)
a b?
0 =x2+ (26 — 6%)y? — 2f Sy P
Comparing, we have
2 2
a 5 a
)
=f4/—
? 2- ¢’
C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020

5/25



Elliptical lens surface

Ideal surface

Ellipse
2 _ )2
=% (y = b)
a b?
0= x?+ (26 — 0%)y? — 2f Sy , 2, &
Comparing, we have
2 2
a 5 a
) f
=f b=——
? 2- ¢’ 2-5
C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020

5/25



Elliptical lens surface
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How to make a Fresnel lens

The ideal refracting lens has an elliptical
shape but this is impractical to make. As-
suming the parabolic approximation:
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How to make a Fresnel lens

C. Segre (lIT)

The ideal refracting lens has an elliptical
shape but this is impractical to make. As-
suming the parabolic approximation:

2
X
h(x) = A
=777
when h(x) = 100A ~ 1000um

x = 104/2Xof ~ 100pm

aspect ratio too large for a stable structure
and absorption would be too large!
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How to make a Fresnel lens

Mark off the longitudinal zones (of thickness
A) where the waves inside and outside the
material are in phase.
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How to make a Fresnel lens

7
Mark off the longitudinal zones (of thickness
6 A) where the waves inside and outside the
5 material are in phase.
4 Each block of thickness A serves no
purpose for refraction but only attenuates
3 the wave.
2
1
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How to make a Fresnel lens

Mark off the longitudinal zones (of thickness
N) where the waves inside and outside the
material are in phase.

Each block of thickness A serves no
purpose for refraction but only attenuates
the wave.

This material can be removed and the
remaining material collapsed to produce
a Fresnel lens which has the same optical
properties as the parabolic lens as long as

N\'\N\N\ /I/I/\/M/M f > NA where N is the number of zones.
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Fresnel lens dimensions

The outermost zones become very small and
thus limit the overall aperture of the zone
plate. The dimensions of outermost zone, N
can be calculated by first defining a scaled
height and lateral dimension

MAARAN. 4L
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Fresnel lens dimensions

The outermost zones become very small and
thus limit the overall aperture of the zone
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height and lateral dimension
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Since v = £2, the position of the N*' zone
is €y = V/N and the scaled width of the N
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Fresnel lens dimensions

Ay =En—En1=VN—VN -1
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Fresnel lens dimensions

Aéy=En—En-1=VN— VN -1
:x/ﬁ(l—,/l—%)

w2
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Fresnel lens dimensions

Aey =én—En-1=VN - VN -1
S
ol 4]

1
NEy ~ ——
En Wi
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Fresnel lens dimensions

Aey =én—En-1=VN - VN -1
S
ol 4]

1
~ 2N
The diameter of the entire lens is thus

25N:2\/_:i

MAARAN. 4L h
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Fresnel lens example

In terms of the unscaled variables

AXN = A&V\/ 2)\of
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Fresnel lens example

In terms of the unscaled variables

[Aof
AXN = A&V\/Q)\of = 27\/

dy =26y = 2Aof _ 2VNA/ 2\ f = \/2NAof

Aéy
If we take
Ao =1A=1x10"1"m
f =50cm = 0.5m
N =100
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Fresnel lens example

In terms of the unscaled variables

[Aof
AXN = A&V\/Q)\of = 27\/

dy =26y = 2Aof _ 2VNA/ 2\ f = \/2NAof

Aén
If we take
Ao =1A=1x%x10"m
f =50cm = 0.5m
N = 100
Axy =5 % 10""m = 500nm dy =2 % 107*m = 100um
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Making a Fresnel zone plate

The specific shape required for a zone plate
is difficult to fabricate, consequently, it
is convenient to approximate the nearly

N\N\[\N MA/MM IA triangular zones with a rectangular profile.
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N\N\[\ /M IA triangular zones with a rectangular profile.

In practice, since the outermost zones
Mhhh] h\ /{_{ ]ﬂ are very small, zone plates are generally

fabricated as alternating zones (rings for
2D) of materials with a large Z-contrast,
such as Au/Si or W/C.
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Making a Fresnel zone plate

The specific shape required for a zone plate
is difficult to fabricate, consequently, it
is convenient to approximate the nearly

N\,\N\ A IA triangular zones with a rectangular profile.

In practice, since the outermost zones
mmh] ﬁ\ /D/ ]ﬂ are very small, zone plates are generally

fabricated as alternating zones (rings for
2D) of materials with a large Z-contrast,
such as Au/Si or W/C.

This kind of zone plate is not as effi-
cient as a true Fresnel lens would be in the
x-ray regime. Nevertheless, efficiencies up
to 35% have been achieved.
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Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

M. Wojick et al., “X-ray zone plates with 25 aspect ratio using a 2-um-thick ultrananocrystalline diamond mold,” Microsyst.
Technol. 20, 2045-2050 (2014).
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Zone plate fabrication
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Start with Ultra nano crystalline

diamond (UNCD) films on SiN. ~ UNCD

SiN

M. Wojick et al., “X-ray zone plates with 25 aspect ratio using a 2-um-thick ultrananocrystalline diamond mold,” Microsyst.
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Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

. . HSQ
Start with Ultra nano crystalline
diamond (UNCD) films on SiN. ~ UNCD

Coat with hydrogen silsesquioxane SiN
(HSQ). Pattern and develop the
HSQ layer.
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Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline Hsa
diamond (UNCD) films on SiN. ~ UNCD
Coat with hydrogen silsesquioxane SiN
(HSQ). Pattern and develop the

HSQ layer. Reactive ion etch the

UNCD to the substrate.
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Start with Ultra nano crystalline Hsa
diamond (UNCD) films on SiN. ~ UNCD
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Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

HSQ

Start with Ultra nano crystalline
diamond (UNCD) films on SiN. ~ UNCD
Coat with hydrogen silsesquioxane SiN
(HSQ). Pattern and develop the

HSQ layer. Reactive ion etch the

UNCD to the substrate. Plate with

gold to make final zone plate.

The whole 150nm diameter zone
plate

M. Wojick et al., “X-ray zone plates with 25 aspect ratio using a 2-pm-thick ultrananocrystalline diamond mold,” Microsyst.
Technol. 20, 2045-2050 (2014).

C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020 12/25



Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has
been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline
diamond (UNCD) films on SiN.
Coat with hydrogen silsesquioxane
(HSQ). Pattern and develop the
HSQ layer. Reactive ion etch the
UNCD to the substrate. Plate with
gold to make final zone plate.

The whole 150nm diameter zone
plate

Detail view of outer zones

HSQ
UNCD
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M. Wojick et al., “X-ray zone plates with 25 aspect ratio using a 2-um-thick ultrananocrystalline diamond mold,” Microsyst.

Technol. 20, 2045-2050 (2014).
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Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple
scattering effects. We begin with the scattering of x-rays from two
electrons.
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Scattering from two electrons
Consider systems where there is only weak scattering, with no multiple

scattering effects. We begin with the scattering of x-rays from two
electrons.

K Q= (k—K)
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scattering effects. We begin with the scattering of x-rays from two
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K The scattering from the se_c;ond electron will
R have a phase shift of ¢ = Q - 7.
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Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple
scattering effects. We begin with the scattering of x-rays from two
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Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple
scattering effects. We begin with the scattering of x-rays from two
electrons.

K Q=(k—K)
20 o 4
T |Q|:2ksin9:7ﬂsin0
K The scattering from the sei:ond electron will
have a phase shift of ¢ = Q - 7.
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Scattering from many electrons

for many electrons
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Scattering from many electrons

for many electrons

J
generalizing to a crystal A(Q) = —no Z ' QR Z '@
N Jj

Since experiments measure | o< A?, the phase information is lost. This is a

problem if we don’t know the specific orientation of the scattering system
relative to the x-ray beam.
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Scattering from many electrons

for many electrons A(@) . Z ol Q7
J

generalizing to a crystal AQ) = —nr Z @ RN Z e’
N J

Since experiments measure | o< A?, the phase information is lost. This is a
problem if we don’t know the specific orientation of the scattering system
relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to
more than two electrons
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Two electrons — fixed orientation

The expression
1(Q) = 212 (1 +cos(@ - 7))

assumes that the two electrons
have a specific, fixed orienta-
tion. In this case the intensity
as a function of Q is.
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Two electrons — fixed orientation

The expression -

w
I

1(Q) = 278 (1+cos(Q- 7))

assumes that the two electrons
have a specific, fixed orienta-
tion. In this case the intensity
as a function of Q is.

Intensity (units of rf)
N
I

—
T
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Q (units of 27/r)
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Two electrons — fixed orientation

The expression -

w
I

1(Q) = 278 (1+cos(Q- 7))

assumes that the two electrons
have a specific, fixed orienta-
tion. In this case the intensity
as a function of Q is.

Intensity (units of rf)
N
I

—
T

Fixed orientation is not the
usual case, particularly for solu-
tion and small-angle scattering.

0 0.5 1 15 2
Q (units of 27/r)
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Orientation averaging

Consider scattering from two
arbitrary electron distribu-
tions, fi and f. A(C_j) is
given by
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Orientation averaging

Consider scattering from two
arbitrary electron distribu-
tions, fi and f. A(C_j) is
given by

AQ) = fi + He'@7

and the intensity, 1(Q), is
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Orientation averaging

Consider scattering from two

A — iQ-F arbitrary  electron digcribu-
A(S)) =hthe _ﬁﬁ . tions, fi and f. A(Q), is
1(Q) = f2 + 2 + e 9" + ke 7 given by

and the intensity, 1(Q), is
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Orientation averaging

AQ) = fi + He'@7

1(Q) = £2+ 2 + fihe!¥T + e A7
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Consider scattering from two
arbitrary electron distribu-
tions, fi and f. A(é) is
given by

and the intensity, 1(Q), is

if the distance between the
scatterers, F, remains constant
(no vibrations) but is allowed
to orient randomly in space
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arbitrary electron distribu-
tions, fi and f. A(é) is
given by

and the intensity, 1(Q), is

if the distance between the
scatterers, F, remains constant
(no vibrations) but is allowed
to orient randomly in space
and we take Q along the z-
axis
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Orientation averaging

AQ) =fi+ éeié'F
I(
</(5?)> =+ £ +2Ah <e"@~?>

Q)
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Consider scattering from two

arbitrary electron distribu-
tions, f; and f. A(Q), is
given by

and the intensity, /(Q), is

if the distance between the
scatterers, F, remains constant
(no vibrations) but is allowed
to orient randomly in space
and we take Q along the z-
axis

substituting x = iQr cosf and
dx = —iQrsindo
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and the intensity, /(Q), is

if the distance between the
scatterers, F, remains constant
(no vibrations) but is allowed
to orient randomly in space
and we take Q along the z-
axis

substituting x = iQr cosf and
dx = —iQrsindo

February 13, 2020 16 /25



Orientation averaging

AQ) =fi+ éeié'F
I(
</(5?)> =+ £ +2Ah <ef@~?>

Q)

C. Segre (IIT)

24+ 24 fihel 9T 1+ fifhe 107

[ €950 sin gdfd
[ sin6dod¢

1 L
4277/ e'Qreost ¢in 0 dp
™ 0

27 1 —Qr
E <_[Qr> /IQr e dX
lzsin(Qr) _ sin(Qr)

2 Qr Qr

PHYS 570 - Spring 2018

Consider scattering from two

arbitrary electron distribu-
tions, f; and f. A(Q), is
given by
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Orientation averaging
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arbitrary electron distribu-
tions, f; and f. A(Q), is
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and the intensity, 1(Q), is

if the distance between the
scatterers, F, remains constant
(no vibrations) but is allowed
to orient randomly in space
and we take Q along the z-
axis

substituting x = iQr cosf and
dx = —iQrsindo

(@) = 4572032

February 13, 2020 16 /25




Randomly oriented electrons

sin(Qr)

(1@) = 2 +A+26R7
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Randomly oriented electrons

sin(Qr)
Qr

Recall that when we had a fixed
orientation of the two electrons,
we had and intensity variation

1(Q) = 212 (1 + cos(Qr)).

(1Q)) = 2+ i+2t
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Randomly oriented electrons

4 . T
= sin(Qr
(H@)) = F+F+2, 20 | _
Qr
Recall that when we had a fixed o3[ ]
orientation of the two electrons, 5 | |
we had and intensity variation %
I(Q) = 22 (1 + cos(Qr)). 3 2p =
>
B | ]
e
e
£ i+ —
% 05 1 15 2

Q (units of 2mw/r)
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Randomly oriented electrons

sin(Qr)
Qr

Recall that when we had a fixed
orientation of the two electrons,
we had and intensity variation

1(Q) = 212 (1 + cos(Qr)).

When we now replace the two
arbitrary scattering distributions
with electrons (fi, b — —n),
we change the intensity profile
significantly.

(1Q)) = 2+ i+2t

N w
! !

. . 2
Intensity (units of r)

—
T
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Randomly oriented electrons

sin(Qr)
Qr

Recall that when we had a fixed
orientation of the two electrons,
we had and intensity variation

1(Q) = 212 (1 + cos(Qr)).

When we now replace the two
arbitrary scattering distributions
with electrons (fi, b — —n),
we change the intensity profile
significantly.

(@) =2 (1+2°527)

(1Q)) = 2+ i+2t

N w
! !

. . 2
Intensity (units of r)

—
T
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Randomly oriented electrons

4
- sin( Qr
<I(Q)> — farpronp ) _
Qr
Recall that when we had a fixed o3[
orientation of the two electrons, 5 |
we had and intensity variation g
I(Q) = 22 (1 + cos(Qr)). 3 2p
>
When we now replace the two é i
arbitrary scattering distributions o
with electrons (f, o — —np), =
we change the intensity profile |
significantly.
= sin(Qr) %
1(Q)) =273 ( 1
(@) =2 (1+2°527)
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Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.
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Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of ry of fo(é) = /p(F)eiQ'?d?

C. Segre (lIT) PHYS 570 - Spring 2018 February 13, 2020 18 /25



Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of ry of fo(é) = /p(?)eiQ'?d?

{z for Q= 0

0 for Q = o

C. Segre (lIT) PHYS 570 - Spring 2018 February 13, 2020 18 /25
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Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of ry of fo(é) = /p(?)eiQ'Fd?
The second limit can be understood 7 for Q=0
classically as loss of phase coher- =

i 0 for Q = o
ence when @ is very large and a

small difference in position results
in an arbitrary change in phase.
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Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of ry of

The second limit can be understood
classically as loss of phase coher-
ence when @ is very large and a
small difference in position results
in an arbitrary change in phase.
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However, it is better to use
quantum mechanics to calculate
the form factor, starting with a
hydrogen-like atom as an example.
The wave function of the 1s elec-
trons is just
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Scattering from atoms

Single electrons are a good first example but a real system involves
scattering from atoms. We can use what we have already used to write an
expression for the scattering from an atom, ignoring the anomalous terms.

with limits in units of ry of

The second limit can be understood
classically as loss of phase coher-
ence when @ is very large and a
small difference in position results
in an arbitrary change in phase.

a0

———e /7 4= 7

mas

77bls(r) =
where zs is a screening correction
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quantum mechanics to calculate
the form factor, starting with a
hydrogen-like atom as an example.
The wave function of the 1s elec-
trons is just

February 13, 2020 18 /25



Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes
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Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes

Q) = L / e=2r/2eiQ7 2 i 0drdOd

mad
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Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes

A |
Q) = — / e 213l QT 2 6in drdfd

mad

the integral in ¢ gives 27 and if we choose Q to be along the z direction,
Q-7 — Qrcosd, so
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mad
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Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes

A |
fy(Q) = /e2r/ae’Q"r2sin0drd9d¢

mad

the integral in ¢ gives 27 and if we choose Q to be along the z direction,
Q-7 — Qrcosd, so

- / 2mrie 2/ / e’reesf sin gdfdr
0 0

masd

1 0 _ 1 :
— - 27TI’2€ 2r/a i [_elQrcosﬂ
ma> Jo iQr

™

dr
0
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Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes

f2(Q) =

1 =
/e2r/ae’Q"r2sin Odrdfd¢

mad

the integral in ¢ gives 27 and if we choose Q to be along the z direction,

Q-7 — Qrcosd, so

f2(Q) =
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Hydrogen form factor calculation

Since p(r) = |h15(r)|?, the form factor integral becomes

f2(Q) =

1/e2'/‘;'e’.6ﬁr2 sin0drdfd¢

mad

the integral in ¢ gives 27 and if we choose Q to be along the z direction,
Q-7 — Qrcosd, so

R 1 0 B T .
Q) = — onrle=?/2 | eiQreostin gdhdr
mTa 0 0
1 0 _ 1 : ™
_ - 27TI’2€ 2r/a i [_elQrcosﬂ dr
ma> Jo iQr 0
1 (> P I
= — 27Tr2€ 2r/a.7 [elQr —e /Qr} dr
ma> Jo iQr
1 b _ 2sin(Qr
=— 2rrle 2r/37( )dr
mad Jo Qr
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Form factor calculation

0(0)= 45 [ are @,

mad
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Form factor calculation

(@) = 5 [ mres 2@,
0

mad Qr

If we write sin(Qr) = Im [e/?"] then the integral becomes

C. Segre (IIT) PHYS 570 - Spring 2018 February 13, 2020 20/25



Form factor calculation

(@) = 5 [ mres 2@,
0

mad Qr

If we write sin(Qr) = Im [e/?"] then the integral becomes

. 4 oo .
0 — —2r/a iQr
f1s(Q) 20 /0 re Im [e } dr
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Form factor calculation

2 f2r/325in(Qr) dr

- 1 o0
Q) = 7Ta3/0 2rree or

If we write sin(Qr) = Im [e/?"] then the integral becomes

- 4 oo
flos(Q) 3Q/ 2r/alm /Qr} dr — ﬁlm [/
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Form factor calculation

(@) = 5 [ mres 2@,
0

Tasd Qr

If we write sin(Qr) = Im [e/?"] then the integral becomes

. 4 00 ) 4 ) )
0 — —2r/a iQr _ —2r/a ,iQr
fe(Q) = 30 /0 re Im [e } dr = 30 Im [/0 re e dr]

this can be integrated by parts with

u=r dv = e "(2/a=iQ) g,
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Form factor calculation

Q

A 1 o 6
Q) = 7T33/0 27rr2e*2’/3Mdr

r

If we write sin(Qr) = Im [e/?"] then the integral becomes

. 4 [
o (Q) = agQ/O

re 2/ Im [eior} dr =

this can be integrated by parts with

4
——Im
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du = dr
= 4
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fls(Q) - 330/
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Form factor calculation
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Form factor calculation

& 00 efr(2/afiQ)
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the first term becomes zero because re "(2/2=1Q) 5 0 as r — 0, the

second is easily integrated

flos(é) =
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B3Q | (2/a—iQ)
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Form factor calculation
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1s and atomic form factors
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1s and atomic form factors

o 1
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This partial form factor will vary
with Z due to the Coulomb inter-
action

In principle, one can compute the
full atomic form factors, however,
it is more useful to tabulate the ex-
perimentally measured form factors
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1s and atomic form factors

1
[1+(Qa/2)?]?

This partial form factor will vary
with Z due to the Coulomb inter-
action
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In principle, one can compute the
full atomic form factors, however,
it is more useful to tabulate the ex-
perimentally measured form factors
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Two hydrogen atoms

Previously we derived the scat-
tering intensity from two local-
ized electrons both fixed and
randomly oriented to the x-rays
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Two hydrogen atoms

Previously we derived the scat-
tering intensity from two local-
ized electrons both fixed and
randomly oriented to the x-rays

when we now replace the two lo-
calized electrons with hydrogen
atoms, we have, for fixed atoms

and if we allow the hydrogen
atoms to be randomly oriented
we have

with no oscillating structure in
the form factor
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Inelastic scattering

The form factors for all atoms drop ; I ;
to zero as @ — oo, however, other
processes continue to scatter pho-
tons.
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Total atomic scattering

We can now write the total scatter-

ing from an atom as the sum of two
components:
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components:
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