Today's outline - February 11, 2020

Today's outline - February 11, 2020

- Refractive optics

Today's outline - February 11, 2020

- Refractive optics
- Ideal refractive surface

Today's outline - February 11, 2020

- Refractive optics
- Ideal refractive surface
- Fresnel lenses and zone plates

Today's outline - February 11, 2020

- Refractive optics
- Ideal refractive surface
- Fresnel lenses and zone plates
- Research papers on refraction

Today's outline - February 11, 2020

- Refractive optics
- Ideal refractive surface
- Fresnel lenses and zone plates
- Research papers on refraction

Homework Assignment \#02:
Problems on Blackboard
due Tuesday, February 18, 2020

Today's outline - February 11, 2020

- Refractive optics
- Ideal refractive surface
- Fresnel lenses and zone plates
- Research papers on refraction

Homework Assignment \#02:
Problems on Blackboard
due Tuesday, February 18, 2020
APS Visit:
10-BM: Friday, April 24, 2020

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, April 24, 2020 - bending magnet line

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, April 24, 2020 - bending magnet line

Inform me now if you intend to come to the session

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, April 24, 2020 - bending magnet line

Inform me now if you intend to come to the session
You will need to have a badge approved in order to do anything more than just observe!

We will do flux measurements, reflectivity, x-ray absorption spectroscopy measurements, use ion chambers and the multielement detector, and more

Beamtime at MRCAT

One day has been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, April 24, 2020 - bending magnet line

Inform me now if you intend to come to the session
You will need to have a badge approved in order to do anything more than just observe!

We will do flux measurements, reflectivity, x-ray absorption spectroscopy measurements, use ion chambers and the multielement detector, and more

I will try to record the session for those of you not in Chicago

Writing a General User Proposal

1. Log into the APS site
2. Start a general user proposal
3. Add an Abstract
4. Choose a beam line
5. Answer the 6 important questions

A tutorial can be found on the course home page http://csrri.iit.edu/~segre/phys570/20S/gu_proposal.html

Register \& log into the APS Portal

User Registration for Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM)

Welcome Users and Visitors

New Users

- Never been assigned an Argonne ID badge number
- Never been to Argonne before
- Plan to conduct hands-on work
- Need remote computer access to an Argonne User Facility

New User

Returning Users

- Update existing biographical/contact information
- Renew my approval for site access

Note: You must have a user badge $\#$ to access this site. Badge number appears on the back of your badge. see below.

My APS Portal

CNM Returning User

Visiting Argonne

- Not conducting hands-on work/research
- Short-term visit to Argonne (e.g. a meeting speaker, family member traveling companion, conference/workshop attendee, tour group member)
- Only utilizing the ANL/APS guest computer network
- Not a current facility user

```
VIsitor Pass
``` Security Notice

\section*{APS Portal details}

Advanced Photon Source
Welcome: Carlo U. Segre

Take me to APS Beam Time Request System
\begin{tabular}{|l|l|l|}
\hline GUP ID & Spokesperson & Submit Date \\
\hline\(\underline{58125}\) & Yiqing Zharg & \(01 / 31 / 2018\) \\
\hline\(\underline{58111}\) & Kamil Kucuk & \(01 / 29 / 2018\) \\
\hline\(\underline{57789}\) & Carlo Segre & \(11 / 15 / 2017\) \\
\hline\(\underline{57415}\) & Andrew Breshears & \(10 / 27 / 2017\) \\
\hline\(\underline{56390}\) & Elena Timofeeva & \(10 / 04 / 2017\) \\
\hline\(\underline{56128}\) & Yujia Ding & \(08 / 31 / 2017\) \\
\hline\(\underline{55959}\) & Shankar Aryal & \(07 / 29 / 2017\) \\
\(\underline{55146}\) & Christopher Murray & \(07 / 07 / 2017\) \\
\hline\(\underline{54740}\) & Leon Shaw & \(07 / 02 / 2017\) \\
\hline\(\underline{54572}\) & Carlo Segre & \(06 / 07 / 2017\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Proposal Title & Status & \\
\hline Ex-situ XAS study of Ni,Co,Fe modified po... & SUBMITT... & \\
\hline In-situ XAS study of Li2FeSiO4 sample as... & SUBMITT... & \\
\hline EXAFS of metal oxide materials & SUBMITT... & \\
\hline Study of metal coordination environment o... & ACTIVE & \\
\hline Investigation of x-ray beam energy on radi... & SUBMITT... & \\
\hline In situ EXAFS study of SnS2-based graph... & SUBMITT... & \\
\hline Ex situ XAS measurement of NMC catnod... & SUBMITT... \\
\hline Operando Characterization of Bimetallic N... & ACTIVE \\
\hline Analysis of Novel Electrode Materiale for ... & ACTIVE & \\
\hline Illinois Tech ex-situ battery EXAFS & SUBMITT... & \\
\hline In situ XAS study of Li rich composite oxid... & NEW \\
\hline
\end{tabular}

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Aroonne National L aboratory
UChicago Argonne LLCI Privacy \& Security Notice I Contact Us I APS Site Map

\section*{Start a General User Proposal}

\section*{Argonne \\ \(-\) \\ Type of Beam Time Request - Main Menu \\ Logout}

Welcome to the APS Beam Time Access System.
Please select an action:

\section*{Add title \& answer details}

\section*{GUP-1}

General User Program: gu_program@aps.anl.gov, \(630-252.9090\)
Technical assistance: mis mgisglaps anl.gov
\({ }^{*}\) Proposal
Title:

\section*{More details}

\section*{(500 characters or less)}
\(\square\)
\begin{tabular}{llll}
*Subject of & \(\square\) Materials science & \(\square\) Physics & \(\square\) chemistry \\
Research: & \(\square\) polymers & \(\square\) Medical applications & \(\square\) Biological and life sciences \\
& \(\square\) Earth sciences & \(\square\) Environmental sciences & \(\square\) optics (excluding x-ray optics) \\
& \(\square\) Engineering & \(\square\) Instrumentation related to user facilities & \(\square\) Purchase of specialty service or materials \\
& \(\square\) other (specify) & Specify other: \(: \square\)
\end{tabular}

ANL

\section*{Select experimenters}

\section*{Insert abstract}

\section*{Make Beam Time Request}

\section*{Beam Time Request continued}
So you have specific scheduling requirements ?

\section*{Answer the 6 important questions}

\section*{Please Note:}

The proposal system runs on the WEIS08859P1 (Western European, Latin) character set. Characters you enter into the system that are Unicode or otherwise not a subset of WEISO8859P1 will not render properly in the report of your proposal.
Typically these are greek, super/subscript characters, etc. Click here to see a list of valid characters and Proposal Content and Style Guidelines

Please specify the funding source(s) for your proposed research:
\begin{tabular}{lll}
\(\square\) DOD (specify) & \(\square\) DOE, Office of Basic Energy Sciences & \(\square\) DOE, Ofice of Biological and Environmental Research \\
\(\square\) DOE, Other (specify) & \(\square\) Foreign (specify) & \(\square\) HHIH \\
\(\square\) Howard Hughes Medical Institute (HHMI) & \(\square\) Industry & \(\square\) NASA \\
\(\square\) NIH & \(\square\) NSF & \(\square\) Other U.S. Government \\
\(\square\) USDA & \(\square\) Other (specify) & Specify Other: \(\square\)
\end{tabular}

\footnotetext{
What is the scientific or technical purpose and importance of the proposed research? (limit : 500 words)
}

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)

Why do you need the APS for this research? (limit: 100 words)

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)

Why do you need the APS for this research? (limit: 100 words)
Why do you need the beamline you have chosen? (limit: 100 words)

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)

Why do you need the APS for this research? (limit: 100 words)
Why do you need the beamline you have chosen? (limit: 100 words)
Describe the participants' previous experience with synchrotron radiation and the experimental results obtained. (If you refer to previous publications, be sure to include complete citations.) (limit: 100 words)

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)

Why do you need the APS for this research? (limit: 100 words)
Why do you need the beamline you have chosen? (limit: 100 words)
Describe the participants' previous experience with synchrotron radiation and the experimental results obtained. (If you refer to previous publications, be sure to include complete citations.) (limit: 100 words)

Describe samples and explain the proposed experiment, including procedures. Explain the basis for your estimated beam time needs. (limit: 500 words)

\section*{Answer the 6 important questions}

What is the scientific or technical purpose and importance of the proposed research? (limit: 500 words)
Why do you need the APS for this research? (limit: 100 words)
Why do you need the beamline you have chosen? (limit: 100 words)
Describe the participants' previous experience with synchrotron radiation and the experimental results obtained. (If you refer to previous publications, be sure to include complete citations.) (limit: 100 words)

Describe samples and explain the proposed experiment, including procedures. Explain the basis for your estimated beam time needs. (limit: 500 words)
Provide an overall estimate of the amount of beam time you will need to accomplish the goals of your proposed experimental program. How many visits during the two-year proposal period do you expect to need? How many shifts will you need during each visit (approximately)? (limit: 500 words)

\section*{Select the review panel}

\section*{Refractive optics}

Just as with visible, light, it is possible to make refractive optics for x -rays

\section*{Refractive optics}

Just as with visible, light, it is possible to make refractive optics for x -rays visible light:
\[
\begin{gathered}
n \sim 1.2-1.5 \\
f \sim 0.1 \mathrm{~m}
\end{gathered}
\]

\section*{Refractive optics}

Just as with visible, light, it is possible to make refractive optics for x -rays visible light:
\[
\begin{gathered}
n \sim 1.2-1.5 \\
f \sim 0.1 \mathrm{~m}
\end{gathered}
\]
x-rays:
\[
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
\]

\section*{Refractive optics}

Just as with visible, light, it is possible to make refractive optics for \(x\)-rays visible light:
\[
\begin{aligned}
n & \sim 1.2-1.5 \\
f & \sim 0.1 \mathrm{~m}
\end{aligned}
\]
\(x\)-rays:
\[
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
\]

x-ray lenses are complementary to those for visible light

\section*{Refractive optics}

Just as with visible, light, it is possible to make refractive optics for \(x\)-rays visible light:
\[
\begin{aligned}
n & \sim 1.2-1.5 \\
f & \sim 0.1 \mathrm{~m}
\end{aligned}
\]
\(x\)-rays:
\[
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
\]

x-ray lenses are complementary to those for visible light getting manageable focal distances requires making compound lenses

\section*{Focal length of a compound lens}

\section*{Start with a 3-element compound lens, calculate effective focal length}

\section*{Focal length of a compound lens}

> Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)

\section*{Focal length of a compound lens}

> Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)

\section*{Focal length of a compound lens}

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)

\section*{Focal length of a compound lens}
\[
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f}
\]

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]

\section*{Focal length of a compound lens}
\begin{tabular}{ll}
\(\longrightarrow\) & \begin{tabular}{l}
Start with a 3-element \\
compound lens, calculate \\
effective focal length
\end{tabular} \\
assuming each lens has \\
the same focal length, \(f\)
\end{tabular}

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}}
\end{gathered}
\]

Start with a 3 -element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f}
\end{gathered}
\]

Start with a 3 -element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2}
\end{gathered}
\]

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\(f_{1}=f, o_{1}=\infty\)
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}}
\end{gathered}
\]

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)
similarly for the third lens, \(O_{3}=-i_{2}\)

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{2}{f}
\end{gathered}
\]

Start with a 3 -element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)
similarly for the third lens, \(o_{3}=-i_{2}\)

\section*{Focal length of a compound lens}
\[
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{2}{f} \rightarrow i_{2}=\frac{f}{3}
\end{gathered}
\]

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f\)
\[
f_{1}=f, o_{1}=\infty
\]
for the second lens, the image \(i_{1}\) is a virtual object, \(o_{2}=-i_{1}\)
similarly for the third lens, \(o_{3}=-i_{2}\)

\section*{Focal length of a compound lens}
\[
\begin{aligned}
& \text { Start with a 3-element } \\
& \text { compound lens, calculate } \\
& \text { effective focal length } \\
& \text { assuming each lens has } \\
& \text { the same focal length, } f \\
& f_{1}=f, o_{1}=\infty \\
& \text { for the second lens, the } \\
& \text { image } i_{1} \text { is a virtual } \\
& \text { object, } o_{2}=-i_{1} \\
& \text { similarly for the third lens, } \\
& o_{3}=-i_{2}
\end{aligned}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.
\[
\begin{aligned}
& \text { consider two waves, one traveling in- } \\
& \text { side the solid and the other in vacuum, } \\
& \lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)
\end{aligned}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \quad \longrightarrow \quad \lambda_{0}=N \delta \lambda_{0}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \quad \longrightarrow \quad \lambda_{0}=N \delta \lambda_{0} \quad \longrightarrow \quad N=\frac{1}{\delta}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.

consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \quad \longrightarrow \quad \lambda_{0}=N \delta \lambda_{0} \quad \longrightarrow \quad N=\frac{1}{\delta}
\]
\[
\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.
consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
\begin{gathered}
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta} \\
\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}=\frac{2 \pi}{\lambda_{0} r_{0} \rho}
\end{gathered}
\]

\section*{Rephasing distance}

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of \(x\)-rays.
consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)\)
if the two waves start in phase, they will be in phase once again after a distance
\[
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
\]
\[
\begin{gathered}
N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta} \\
\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}=\frac{2 \pi}{\lambda_{0} r_{0} \rho} \approx 10 \mu \mathrm{~m}
\end{gathered}
\]

\section*{Ideal interface profile - "thin" lens}

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\).

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).

\section*{Ideal interface profile - "thin" lens}

from the \(A A^{\prime} B^{\prime}\) triangle

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle
\[
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x
\]

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangre
\[
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)}
\]

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle
and from the \(B C B^{\prime}\) tri\(\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)}\) angle

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle and from the \(B C B^{\prime}\) triangle
\[
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}
\end{gathered}
\]

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle
and from the \(B C B^{\prime}\) triangle
\[
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta
\end{gathered}
\]

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle
and from the \(B C B^{\prime}\) triangle
using \(\Lambda=\lambda_{0} / \delta\)
\[
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta
\end{gathered}
\]

\section*{Ideal interface profile - "thin" lens}

The wave exits the material into vacuum through a surface of profile \(h(x)\), and is twisted by an angle \(\alpha\). Follow the path of two points on the wavefront, \(A\) and \(A^{\prime}\) as they propagate to \(B\) and \(B^{\prime}\).
from the \(A A^{\prime} B^{\prime}\) triangle
and from the \(B C B^{\prime}\) triangle
using \(\Lambda=\lambda_{0} / \delta\)
\[
\begin{array}{r}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta=h^{\prime}(x) \frac{\lambda_{0}}{\Lambda}
\end{array}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
\]
this can be directly integrated

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \quad \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
\]
this can be directly integrated
\[
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \quad \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
\]
this can be directly integrated
\[
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}=\left[\frac{x}{\sqrt{2 f \lambda_{0}}}\right]^{2}
\]

\section*{Ideal interface profile - "thin" lens}

If the desired focal length of this lens is \(f\), the wave must be redirected at an angle which depends on the distance from the optical axis
\[
\alpha(x)=\frac{x}{f}
\]
combining, we have
\[
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
\]
this can be directly integrated
\[
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}=\left[\frac{x}{\sqrt{2 f \lambda_{0}}}\right]^{2}
\]

a parabola is the ideal surface shape for focusing by refraction for a "thin" lens with limited aperture

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of a parabola

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
h(x)=R-\sqrt{R^{2}-x^{2}}
\]
a parabola

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)
\[
\approx R-R\left(1-\frac{1}{2} \frac{x^{2}}{R^{2}}\right)
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)
\[
\approx R-R\left(1-\frac{1}{2} \frac{x^{2}}{R^{2}}\right) \approx \frac{x^{2}}{2 R}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)
\[
\approx R-R\left(1-\frac{1}{2} \frac{x^{2}}{R^{2}}\right) \approx \frac{x^{2}}{2 R}
\]
and thus the focal length becomes

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of a parabola
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)
\[
\approx R-R\left(1-\frac{1}{2} \frac{x^{2}}{R^{2}}\right) \approx \frac{x^{2}}{2 R}
\]
and thus the focal length becomes
\[
f \approx \frac{R}{\delta}
\]

\section*{Focal length of circular lens}

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
\[
f=\frac{x^{2} \Lambda}{2 \lambda_{0} h(x)}=\frac{1}{2 \delta} \frac{x^{2}}{h(x)} \quad \text { or alternatively } \quad f=\frac{1}{\delta} \frac{x}{h^{\prime}(x)}
\]
if the surface is a circle instead of a parabola
\[
\begin{aligned}
h(x) & =R-\sqrt{R^{2}-x^{2}} \\
& =R-R \sqrt{1-\frac{x^{2}}{R^{2}}}
\end{aligned}
\]
confining the aperture to values where \(x \ll R\)
\[
\approx R-R\left(1-\frac{1}{2} \frac{x^{2}}{R^{2}}\right) \approx \frac{x^{2}}{2 R}
\]
and thus the focal length becomes
for \(2 N\) circular lenses we have
\[
\begin{aligned}
f & \approx \frac{R}{\delta} \\
f_{2 N} & \approx \frac{R}{2 N \delta}
\end{aligned}
\]

\section*{Focussing by a beryllium lens}

H.R. Beguiristain et al., "X-ray focusing with compound lenses made from beryllium," Optics Lett., 27, 778 (2007).

\section*{Focussing by a beryllium lens}

For 50 holes of radius \(R=1 \mathrm{~mm}\) in beryllium (Be) at \(E=10 \mathrm{keV}\), we can calculate the focal length, knowing \(\delta=3.41 \times 10^{-6}\)
\[
f_{N}=\frac{R}{2 N \delta}
\]
H.R. Beguiristain et al., "X-ray focusing with compound lenses made from beryllium," Optics Lett., 27, 778 (2007).

\section*{Focussing by a beryllium lens}

For 50 holes of radius \(R=1 \mathrm{~mm}\) in beryllium (Be) at \(E=10 \mathrm{keV}\), we can calculate the focal length, knowing \(\delta=3.41 \times 10^{-6}\)
\[
f_{N}=\frac{R}{2 N \delta}=\frac{1 \times 10^{-3} \mathrm{~m}}{2(50)\left(3.41 \times 10^{-6}\right)}
\]
H.R. Beguiristain et al., "X-ray focusing with compound lenses made from beryllium," Optics Lett., 27, 778 (2007).

\section*{Focussing by a beryllium lens}

For 50 holes of radius \(R=1 \mathrm{~mm}\) in beryllium (Be) at \(E=10 \mathrm{keV}\), we can calculate the focal length, knowing \(\delta=3.41 \times 10^{-6}\)
\[
f_{N}=\frac{R}{2 N \delta}=\frac{1 \times 10^{-3} \mathrm{~m}}{2(50)\left(3.41 \times 10^{-6}\right)}=2.93 \mathrm{~m}
\]

\section*{Focussing by a beryllium lens}

For 50 holes of radius \(R=1 \mathrm{~mm}\) in beryllium (Be) at \(E=10 \mathrm{keV}\), we can calculate the focal length, knowing \(\delta=3.41 \times 10^{-6}\)
\[
f_{N}=\frac{R}{2 N \delta}=\frac{1 \times 10^{-3} \mathrm{~m}}{2(50)\left(3.41 \times 10^{-6}\right)}=2.93 \mathrm{~m}
\]
depending on the wall thickness of the lenslets, the transmission can be up to \(74 \%\)
H.R. Beguiristain et al., "X-ray focusing with compound lenses made from beryllium," Optics Lett., 27, 778 (2007).

\section*{Alligator-type lenses}

Perhaps one of the most original x-ray lenses has been made by using old vinyl records in an "alligator" configuration.

Björn Cederström et al., "Focusing hard X-rays with old LPs", Nature 404, 951 (2000).

\section*{Alligator-type lenses}

Perhaps one of the most original x-ray lenses has been made by using old vinyl records in an "alligator" configuration.

Björn Cederström et al., "Focusing hard X-rays with old LPs", Nature 404, 951 (2000).

This design has also been used to make lenses out of lithium metal.
E.M. Dufresne et al., "Lithium metal for x-ray refractive optics", Appl. Phys. Lett. 79, 4085 (2001).

\section*{Extruded Al lens}

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

\section*{Extruded AI lens}

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

A. Khounsary et al., "Fabrication, testing, and performance of a variable focus x-ray compound lens", Proc. SPIE 4783, 49-54 (2002).

\section*{Extruded AI lens}

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded aluminum lens with parabolic figure

A. Khounsary et al., "Fabrication, testing, and performance of a variable focus \(x\)-ray compound lens", Proc. SPIE 4783, 49-54 (2002).

\section*{Extruded AI lens}

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

> Extruded aluminum lens with parabolic figure

Cut diagonally to expose variable number of "lenses" to a horizontal beam

A. Khounsary et al., "Fabrication, testing, and performance of a variable focus \(x\)-ray compound lens", Proc. SPIE 4783, 49-54 (2002).

\section*{Extruded AI lens}

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded aluminum lens with parabolic figure

Cut diagonally to expose variable number of "lenses" to a horizontal beam

Horizontal translation allows change in focal length but it is quantized, not continuous
A. Khounsary et al., "Fabrication, testing, and performance of a variable focus \(x\)-ray compound lens", Proc. SPIE 4783, 49-54 (2002).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed.
B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system
B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL.

B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle \(\chi\) about vertical axis

B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle \(\chi\) about vertical axis giving an effective change in the number of "lenses" by a factor \(1 / \cos \chi\).

B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle \(\chi\) about vertical axis giving an effective change in the number of "lenses" by a factor \(1 / \cos \chi\).

at \(E=5.5 \mathrm{keV}\) and \(\chi=0^{\circ}\), height is over \(120 \mu \mathrm{~m}\)
B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle \(\chi\) about vertical axis giving an effective change in the number of "lenses" by a factor \(1 / \cos \chi\).
at \(E=5.5 \mathrm{keV}\) and \(\chi=0^{\circ}\), height is over \(120 \mu \mathrm{~m}\)

At \(\chi=30^{\circ}\), it is under \(50 \mu \mathrm{~m}\)

B. Adams and C. Rose-Petruck, "X-ray focusing scheme with continuously variable lens," J. Synchrotron Radiation 22, 16-22 (2015).

\section*{Variable focal length CRL}

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle \(\chi\) about vertical axis giving an effective change in the number of "lenses" by a factor \(1 / \cos \chi\).

Optimal focus is \(20 \mu \mathrm{~m}\) at \(\chi=40^{\circ}\)```

