
Today’s outline - February 06, 2020

• Designing a multilayer

• Reflection from a graded index

• Reflection from rough surfaces

• Surface models

• Reflectivity research topics

• Mirrors

Homework Assignment #02:
Problems on Blackboard
due Tuesday, February 18, 2020
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Multilayer design

0.5% Bandwidth

1.0% Bandwidth

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,”
Proc. SPIE 10760, 107600j (2018).

Materials for multilayer
monochromator chosen
to reflect 12 keV x-rays
at ∼ 2 degrees with 0.5%
and 1.0% bandwidth

Common design parame-
ters include bilayer filler
fraction Γ = 0.5, rough-
ness σ = 0.35 nm, and
number of bilayers N =
300

MoSi2/B4C and Mo/B4C
were selected for the
0.5% and 1.0% band-
width coatings, respec-
tively
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Multilayer fabrication & testing

The 0.5% and 1.0% bandwidth lay-
ers were deposited side-by-side on a
monolithic 20 mm × 30 mm × 100
mm polished silicon block

When illuminated with 12 keV x-
rays the two multilayers showed
diffraction peaks at nearly the same
angle. The reflectivities were both
over 75% and the bandwidths were
0.52% and 0.86%, respectively.

A. Khounsary et al., “A dual-bandwidth multilayer
monochromator system,” Proc. SPIE 10760, 107600j
(2018).
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Multilayer spectrum

A. Khounsary et al., “A dual-bandwidth multilayer monochromator system,” Proc. SPIE 10760, 107600j (2018).
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Graded interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .
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Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2
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The error function - a specific case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√

2σ

0
e−t2

dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√

2πσ2
e−

1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain
the reflection coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V .

The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by

using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by

using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 8 / 31



Conversion to surface integral

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

Taking

~C = ẑ
e i ~Q·~r

iQz

We have

~∇ · ~C =
e i ~Q·~r

iQz
iQz = e i ~Q·~r

rV = −r0ρ
∫

V
e i ~Q·~rd~r

= −r0ρ
∫

V

~∇ ·

(
ẑ
e i ~Q·~r

iQz

)
· d~r

rS = −r0ρ
∫

S

(
ẑ
e i ~Q·~r

iQz

)
· d~S

rS = −r0ρ
1

iQz

∫
S
e i ~Q·~rdxdy
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ẑ
e i ~Q·~r

iQz

)
· d~S

rS = −r0ρ
1

iQz

∫
S
e i ~Q·~rdxdy

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 9 / 31



Conversion to surface integral

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

Taking

~C = ẑ
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they
are along the ẑ direction, and we can also choose the thickness of the slab
sufficiently large such that the lower surface will not contribute.

Thus, the integral need only
be evaluated over the top,
rough surface whose varia-
tion we characterize by the
function h(x , y)

~Q ·~r = Qzh(x , y) + Qxx + Qyy

rS = − r0ρ

iQz

∫
S
e iQz h(x ,y)e i(Qx x+Qy y)dxdy

The actual scattering cross section is the square of this integral

dσ

dΩ
=

(
r0ρ

Qz

)2 ∫
S

∫
S ′
e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′
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Scattering cross section

If we assume that h(x , y)− h(x ′, y ′) depends only on the relative
difference in position, x − x ′ and y − y ′ the four dimensional integral
collapses to the product of two two dimensional integrals

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 ∫
S ′
dx ′dy ′

∫
S

〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1

∫ 〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

where A0/ sin θ1 is just the illuminated surface area and the term in the
angled brackets is an ensemble average over all possible choices of the
origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are
Gaussian and(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy
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Limiting Case - Flat surface

Define a function g(x , y) =
〈

[h(0, 0)− h(x , y)]2
〉

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta
function

2πδ(q) =

∫
e iqxdx

the expression for the scat-
tered intensity in terms of
the momentum transfer wave
vectors is

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
δ(Qx )δ(Qy )

Isc =

(
I0
A0

)(
dσ

dΩ

)
∆Qx ∆Qy

k2 sin θ2

R(Qz ) =
Isc

I0
=

(
Q2

c /8

Qz

)2(
1

Qz/2

)2

=

(
Qc

2Qz

)4
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in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta
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2πδ(q) =
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Uncorrelated surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and

〈
[h(0, 0)− h(x , y)]2

〉
= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2
〈
h2
〉

This quantity is simply related to the rms roughness, σ by σ2 =
〈
h2
〉

and
the cross-section is given by(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈h2〉/2e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnel
cross-section for a flat surface(

dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
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Surface roughness effect

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2

for a perfectly flat surface, we
get the Fresnel reflectivity de-
rived for a thin slab

for an uncorrelated rough sur-
face, the reflectivity is re-
duced by an exponential fac-
tor controlled by the rms sur-
face roughness σ

this leads to a rapid drop
in reflectivity as the surface
roughness increases
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Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1

smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 15 / 31



Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
A0r

2
0ρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πA0r

2
0ρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z
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Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.
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Bounded correlations

If the correlations remain bounded as r →∞

g(x , y) = 2
〈
h2
〉
− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

where
C (x , y) = σ2e−(r/ξ)2h

(
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)
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r0ρ

Qz
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e−Q2

z σ
2
∫

eQ2
z C(x ,y)e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
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e iQx xe iQy ydxdy
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(
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e−Q2
z σ

2
+

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelated
roughness, and diffuse scattering from the correlated portion of the surface
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Layering in liquid films

TEHOS, tetrakis–(2-
ethylhexoxy)–silane,
a non-polar, roughly
spherical molecule, was
deposited on Si(111) single
crystals

Specular reflection mea-
surements were made at
MRCAT (Sector 10 at
APS) and at X18A (at
NSLS).

Deviations from uniform density are used to
fit experimental reflectivity

C.-J. Yu et al., “Observation of molecular layering in thin liquid films using
x-ray reflectivity”, Phys. Rev. Lett. 82, 2326–2329 (1999).
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Layering in liquid films

The peak below 10Å appears in all
but the thickest film and depends
on the interactions between film
and substrate.

There are always peaks between
10-20Å and 20-30Åand a broad
peak at the free surface showing
the presence of ordered layers of
molecules.

The authors conclude that the pres-
ence of a hard smooth surface is
required for ordering and therefore
deviations from an ideal, isotropic
liquid.

C.-J. Yu et al., “Observation of molecular layering in thin liquid films using x-ray reflectivity,” Phys. Rev. Lett. 82, 2326–2329
(1999).
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Layering in liquid films

As the surface layer thickens, the
deviation of density from the aver-
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Film growth kinetics

The goal of this project was to understand the evolution of sur-
face roughness during the growth of a silver thin film.

The question is whether there is surface diffusion of the deposited
atoms during the growth

In order to study this question, a silicon substrate was placed in
the growth chamber and illuminated with x-rays after a period
of deposition

The sample was flipped to a downward facing position and silver
atoms deposited for a period of time, then flipped to an upward
facing position for the reflectivity measurements

5 deposition with thicknesses varying from 10 nm to 150 nm
were studies

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of vapor-deposited silver films,” Phys.
Rev. B 49, 4902–4907 (1994).
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Film growth kinetics

Gaussian roughness profile
with a “roughness” expo-
nent 0 < h < 1.

As the
film is grown by vapor de-
position, the rms width σ,
grows with a “growth ex-
ponent” β and the correla-
tion length in the plane of
the surface, ξ evolves with
the “dynamic” scaling ex-
ponent, zs = h/β.

g(r) ∝ r2h σ ∝ tβ

ξ ∝ t1/zs 〈h〉 ∝ t

h ≈ 0.33, β ≈ 0.25 for no
diffusion.

Ag/Si films: 10nm (A), 18nm (B),
37nm (C), 73nm (D), 150nm (E)

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of vapor-
deposited silver films,” Phys. Rev. B 49, 4902–4907 (1994).
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Film growth kinetics

h can be obtained from the
diffuse off-specular reflec-
tion which should vary as

I (qz ) ∝ σ−2/hq
−(3+1/h)
z

This gives h = 0.63 but is
this correct?

Measure it directly using
STM

g(r) = 2σ2
[
1− e(r/ξ)2h

]
h = 0.78, ξ = 23nm,

σ = 3.2nm

Thus zs = h/β = 2.7 and diffraction data confirm ξ = 19.9〈h〉1/2.7 Å
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Liquid metal surfaces

X-ray reflectivity using syn-
chrotron radiation has made
possible the study of the sur-
face of liquid metals

a liquid can be described as
charged ions in a sea of con-
duction electrons

this leads to a well-defined
surface structure as can be
seen in liquid gallium

contrast this with the scat-
tering from liquid mercury

P. Pershan, “Review of the highlights of x-ray studies of liquid metal surfaces,” J. Appl. Phys. 116, 222201 (2014).
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Liquid metal eutectics

High vapor pressure and
thermal excitations limit the
number of pure metals which
can be studied but alloy eu-
tectics provide many possi-
bilities

tune x-rays around the Bi ab-
sorption edge at 13.42 keV
and measure a Bi43Sn57 eu-
tectic

surface layer is rich in Bi
(95%), second layer is defi-
cient (25%), and third layer
is rich in Bi (53%) once again

O. Shpyrko et al., “Atomic-scale surface demixing in a eutectic liquid
BiSn alloy,” Phys. Rev. Lett. 95, 106103 (2005).
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Tangential focusing mirror

The shape of an ideal mirror is an
ellipse, where any ray coming from
one focus will be projected to the
second focus.

Consider a 1:1 focus-
ing mirror. For an ellipse the sum
of the distances from any point on
the ellipse to the foci is a constant.

F1P + F2P = 2a

F1B = F2B = a

sin θ =
b
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=
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Saggital focusing mirror

Ellipses are hard figures to make,
so usually, they are approximated
by circles. In the case of saggital
focusing, an ellipsoid of revolution
with diameter 2b, is used for focus-
ing.

ρsaggital = b = 2f sin θ

The tangential focus is also usually
approximated by a circular cross-
section with radius

ρtangential = a =
2f

sin θ

F
1

F
2

2b
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Types of focusing mirrors

A simple mirror such as the one at
MRCAT consists of a polished glass
slab with two “legs”.

A force is applied
mechanically to push the legs apart and
bend the mirror to a radius as small as
R = 500m.

The bimorph mirror is designed to ob-
tain a smaller form error than a simple
bender through the use of multiple
actuators tuned experimentally.

A cost effective way to focus in both
directions is a toroidal mirror which has
a fixed bend in the transverse direction
but which can be bent longitudinally to
change the vertical focus.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 27 / 31



Types of focusing mirrors

A simple mirror such as the one at
MRCAT consists of a polished glass
slab with two “legs”. A force is applied
mechanically to push the legs apart and
bend the mirror to a radius as small as
R = 500m.

The bimorph mirror is designed to ob-
tain a smaller form error than a simple
bender through the use of multiple
actuators tuned experimentally.

A cost effective way to focus in both
directions is a toroidal mirror which has
a fixed bend in the transverse direction
but which can be bent longitudinally to
change the vertical focus.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 27 / 31



Types of focusing mirrors

A simple mirror such as the one at
MRCAT consists of a polished glass
slab with two “legs”. A force is applied
mechanically to push the legs apart and
bend the mirror to a radius as small as
R = 500m.

The bimorph mirror is designed to ob-
tain a smaller form error than a simple
bender through the use of multiple
actuators tuned experimentally.

A cost effective way to focus in both
directions is a toroidal mirror which has
a fixed bend in the transverse direction
but which can be bent longitudinally to
change the vertical focus.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 27 / 31



Types of focusing mirrors

A simple mirror such as the one at
MRCAT consists of a polished glass
slab with two “legs”. A force is applied
mechanically to push the legs apart and
bend the mirror to a radius as small as
R = 500m.

The bimorph mirror is designed to ob-
tain a smaller form error than a simple
bender through the use of multiple
actuators tuned experimentally.

A cost effective way to focus in both
directions is a toroidal mirror which has
a fixed bend in the transverse direction
but which can be bent longitudinally to
change the vertical focus.

C. Segre (IIT) PHYS 570 - Fall 2020 February 06, 2020 27 / 31



Dual focusing options

• Toroidal mirror — simple, moderate focus, good for initial
focusing element, easy to distort beam

• Saggittal focusing crystal & vertical focusing mirror —
adjustable in both directions, good for initial focusing
element

• Kirkpatrick-Baez mirror pair — in combination with an
initial focusing element, good for final small focal spot and
variable energy

• Zone plates — in combination with an initial focusing
element, gives smallest focal spot, but hard to vary energy

• Refractive lenses — good final focus, focus moves with
energy, significant attenuation and hard to change focal
length
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The MRCAT mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to a
few Å roughness

One platinum stripe and one rhodium
stripe deposited along the length of the
mirror on top of a chromium buffer layer

A mounting system which permits angu-
lar positioning to less than 1/100 of a
degree as well as horizontal and vertical
motions

A bending mechanism to permit vertical
focusing of the beam to ∼ 60 µm
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Mirror performance

When illuminated with 12 keV
x-rays on the glass “stripe”, the
reflectivity is measured as:

With the Rh stripe, the thin
slab reflection is evident and
the critical angle is significantly
higher.

The Pt stripe gives a higher crit-
ical angle still but a lower reflec-
tivity and it looks like an infinite
slab. Why?
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Mirror performance (cont.)
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As we move up in energy the
critical angle for the Pt stripe
drops.

The reflectivity at low angles
improves as we are well away
from the Pt absorption edges
at 11,565 eV, 13,273 eV, and
13,880 eV.

As energy rises, the Pt layer be-
gins to show the reflectivity of a
thin slab.
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