Today's outline - February 04, 2020

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the kinematical regime

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the kinematical regime
- Parratt's exact recursive calculation

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the kinematical regime
- Parratt's exact recursive calculation

Reading Assignment: Chapter 3.5-3.8

Today's outline - February 04, 2020

- Limiting cases of Fresnel equations
- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the kinematical regime
- Parratt's exact recursive calculation

Reading Assignment: Chapter 3.5-3.8
Homework Assignment \#02:
Problems on Blackboard
due Tuesday, February 18, 2020

Fresnel equation review

The scattering vector (or momentum transfer) is given by

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$ and for small angles

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$ and for small angles

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c}
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by and for small angles

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

$$
\approx 2 k \alpha
$$

similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

Fresnel equation review

The scattering vector (or momentum transfer) is given by
$Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha$
and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}}
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by
$Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha$
and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
\begin{aligned}
Q & =\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha \\
& \approx 2 k \alpha
\end{aligned}
$$

and for small angles

similarly for the critical angle we define

$$
\begin{aligned}
Q_{c} & =2 k \sin \alpha_{c} \approx 2 k \alpha_{c} \\
& q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
\end{aligned}
$$

the three defining optical equations become

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
Q=\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha
$$

and for small angles
$\approx 2 k \alpha$
similarly for the critical angle we define

$$
\begin{aligned}
Q_{c} & =2 k \sin \alpha_{c} \approx 2 k \alpha_{c} \\
q & =\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
\end{aligned}
$$

the three defining optical equations become

Snell's Law

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
\begin{aligned}
Q & =\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha \\
& \approx 2 k \alpha
\end{aligned}
$$

and for small angles

similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

the three defining optical equations become

Snell's Law

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}, \quad b_{\mu}=\frac{2 k}{Q_{c}^{2}} \mu
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
\begin{aligned}
Q & =\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha \\
& \approx 2 k \alpha
\end{aligned}
$$

and for small angles

similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

the three defining optical equations become

Snell's Law

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}, \quad b_{\mu}=\frac{2 k}{Q_{c}^{2}} \mu
$$

Fresnel equations

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
\begin{aligned}
Q & =\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha \\
& \approx 2 k \alpha
\end{aligned}
$$

and for small angles

similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

the three defining optical equations become

Snell's Law
Fresnel equations

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu}, \quad b_{\mu}=\frac{2 k}{Q_{c}^{2}} \mu \\
r & =\frac{q-q^{\prime}}{q+q^{\prime}}
\end{aligned}
$$

Fresnel equation review

The scattering vector (or momentum transfer) is given by

$$
\begin{aligned}
Q & =\frac{4 \pi}{\lambda} \sin \alpha=2 k \sin \alpha \\
& \approx 2 k \alpha
\end{aligned}
$$

and for small angles

similarly for the critical angle we define

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

defining a reduced scattering vector

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha, \quad q^{\prime} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

the three defining optical equations become

Snell's Law
Fresnel equations

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu}, \quad b_{\mu}=\frac{2 k}{Q_{c}^{2}} \mu \\
r & =\frac{q-q^{\prime}}{q+q^{\prime}}, \quad t=\frac{2 q}{q+q^{\prime}}
\end{aligned}
$$

Limiting cases - $q \gg 1$

Start by rearranging Snell's Law

$$
q^{2}=q^{2}+1-2 i b_{\mu}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law

$$
\begin{gathered}
q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2}=q^{2}-1+2 i b_{\mu}
\end{gathered}
$$

Limiting cases - $q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$

$$
\begin{gathered}
q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2}=q^{2}-1+2 i b_{\mu}
\end{gathered}
$$

Limiting cases - $q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$,

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}\left(1+2 i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

Comparing to the equation above gives

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

Comparing to the equation above gives

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{I m\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{lm}\left(q^{\prime}\right) q \approx b_{\mu}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

Comparing to the equation above gives

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2}
$$

The reflection and transmission co-

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$ efficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1, \quad \wedge \approx \frac{\alpha}{\mu}
$$

Limiting cases $-q \gg 1$

Start by rearranging Snell's Law and since q is real by definition, when $q \gg 1$
this implies $\operatorname{Re}\left(q^{\prime}\right) \approx q$, while the imaginary part can be computed by assuming

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2}
$$

$$
\approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1, \quad \wedge \approx \frac{\alpha}{\mu}
$$

reflected wave in phase with incident, almost total transmission

Limiting cases - $q \ll 1$

When $q \ll 1$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Limiting cases $-q \ll 1$

When $q \ll 1$

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu}
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}}
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q^{\prime}}
\end{aligned}
$$

Thus the reflection and transmission coefficients become

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q^{\prime}}=-2 i q
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q^{\prime}}=-2 i q \\
& \Lambda \approx \frac{1}{Q_{c}}
\end{aligned}
$$

Limiting cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1 since b_{μ} is very small

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i \\
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q^{\prime}}=-2 i q \\
& \Lambda \approx \frac{1}{Q_{c}}
\end{aligned}
$$

Thus the reflection and transmission coefficients become

The reflected wave is out of phase with the incident wave, there is only small transmission in the form of an evanescent wave, and the penetration depth is very short.

Limiting cases - $q \sim 1$

If $q \sim 1$,

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$,

$$
\begin{gathered}
q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2}=q^{2}-1+2 i b_{\mu}
\end{gathered}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$,

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx 2 i b_{\mu}
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ},

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2}=q^{2}-1+2 i b_{\mu} \\
& q^{\prime 2} \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1)
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2}
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2}
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i)
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i)
\end{aligned}
$$

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)}
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q}
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q}=2
\end{aligned}
$$

Limiting cases - $q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q}=2 \\
\Lambda & \approx \frac{1}{Q_{c} \operatorname{lm}\left(q^{\prime}\right)} \approx \frac{1}{Q_{c} \sqrt{b_{\mu}}}
\end{aligned}
$$

Limiting cases $-q \sim 1$

If $q \sim 1$, adding and subtracting b_{μ}, yields that q^{\prime} is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & =q^{2}-1+2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(1+2 i-1) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx \frac{2 q}{q}=2 \\
\Lambda & \approx \frac{1}{Q_{c} \operatorname{lm}\left(q^{\prime}\right)} \approx \frac{1}{Q_{c} \sqrt{b_{\mu}}}
\end{aligned}
$$

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

The reflected wave is in phase with the incident, there is significant (larger amplitude than the reflection) transmission with a large penetration depth.

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}
$$

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption.

Review of interface effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption. We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate

Reflection and transmission coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

Reflection and transmission coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

r_{01} - reflection in n_{0} off n_{1} t_{01} - transmission from n_{0} into n_{1}

Reflection and transmission coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:
r_{01} - reflection in n_{0} off n_{1}
t_{01} - transmission from n_{0} into n_{1}

$$
\begin{aligned}
& r_{12}-\text { reflection in } n_{1} \text { off } n_{2} \\
& t_{12} \text { - transmission from } n_{1} \text { into } n_{2}
\end{aligned}
$$

Reflection and transmission coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:


```
r01 - reflection in nofoff n
t01 - transmission from no into n
r12 - reflection in n
t12 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into }\mp@subsup{n}{2}{
r r10 - reflection in n}\mp@subsup{n}{1}{}\mathrm{ off n
t10 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into no
```


Reflection and transmission coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

$$
\begin{aligned}
& r_{01}-\text { reflection in } n_{0} \text { off } n_{1} \\
& t_{01} \text { - transmission from } n_{0} \text { into } n_{1} \\
& r_{12} \text { - reflection in } n_{1} \text { off } n_{2} \\
& t_{12} \text { - transmission from } n_{1} \text { into } n_{2} \\
& r_{10} \text { - reflection in } n_{1} \text { off } n_{0} \\
& t_{10} \text { - transmission from } n_{1} \text { into } n_{0}
\end{aligned}
$$

Build the composite reflection coefficient from all possible events

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

r_{01}

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

$$
\begin{gathered}
r_{01} \\
+ \\
t_{01} r_{12} t_{10} \\
+ \\
t_{01} r_{12} r_{10} r_{12} t_{10}
\end{gathered}
$$

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}
$$

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

which multiplies the reflection coefficient

Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

which multiplies the reflection coefficient with each pass through the slab

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

factoring out the second term
from all the rest

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

$$
r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m}
$$

factoring out the second term
from all the rest

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

$$
r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m}
$$

factoring out the second term
from all the rest
summing the geometric series as previously

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rll}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& & \text { factoring out the second term } \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \\
\text { from all the rest }
\end{array} \quad \begin{array}{ll}
\text { summing the geometric series } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
\end{array} \quad \begin{aligned}
& \text { as previously }
\end{aligned}
$$

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rll}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& & \text { factoring out the second term } \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \\
\text { from all the rest }
\end{array}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rlrl}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& & \text { factoring out the second term } \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & & \text { from all the rest }
\end{array} \quad \begin{array}{ll}
\text { summing the geometric series } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
\end{array} \quad \begin{aligned}
& \text { as previously }
\end{aligned}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}
$$

Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rll}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& & \text { factoring out the second term } \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \\
\text { from all the rest }
\end{array} \quad \begin{array}{ll}
\text { summing the geometric series } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
\end{array} \quad \begin{aligned}
& \text { as previously }
\end{aligned}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}, \quad t=\frac{2 Q}{Q+Q^{\prime}}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} \quad t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} &
\end{array}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity
$r_{01}^{2}+t_{01} t_{10}$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity
$r_{01}^{2}+t_{01} t_{10}=\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}}$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
\begin{aligned}
& r_{01}^{2}+t_{01} t_{10}=\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}} \\
& =\frac{Q_{0}^{2}-2 Q_{0} Q_{1}+Q_{1}^{2}+4 Q_{0} Q_{1}}{\left(Q_{0}+Q_{1}\right)^{2}}
\end{aligned}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
\begin{aligned}
& r_{01}^{2}+t_{01} t_{10}=\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}} \\
& =\frac{Q_{0}^{2}-2 Q_{0} Q_{1}+Q_{1}^{2}+4 Q_{0} Q_{1}}{\left(Q_{0}+Q_{1}\right)^{2}}=\frac{Q_{0}^{2}+2 Q_{0} Q_{1}+Q_{1}^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}
\end{aligned}
$$

Fresnel equation identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
\begin{aligned}
& r_{01}^{2}+t_{01} t_{10}=\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}} \\
& =\frac{Q_{0}^{2}-2 Q_{0} Q_{1}+Q_{1}^{2}+4 Q_{0} Q_{1}}{\left(Q_{0}+Q_{1}\right)^{2}}=\frac{Q_{0}^{2}+2 Q_{0} Q_{1}+Q_{1}^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}=\frac{\left(Q_{0}+Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}=1
\end{aligned}
$$

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
r_{s l a b}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
r_{s l a b}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{array}{rlr}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & \text { Using the identity } \\
& =t_{01} t_{10}=1-r_{01}^{2} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} &
\end{array}
$$

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier
$r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$

$$
=r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier
$r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$
$=r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$
$=\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}
\end{aligned}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

$$
r_{\text {slab }}=\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}
$$

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}
\end{aligned}
$$

$$
r_{\text {slab }}=\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

In the case of $n_{0}=n_{2}$ there is the further simplification of $r_{12}=-r_{01}$.

Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}} \\
r_{\text {slab }} & =\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{aligned}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

In the case of $n_{0}=n_{2}$ there is the further simplification of $r_{12}=-r_{01}$.

Kiessig fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

Kiessig fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{\text {slab }}=\left|r_{s l a b}\right|^{2}
$$

Kiessig fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{\text {slab }}=\left|r_{s l a b}\right|^{2}
$$

Kiessig fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{s l a b}=\left|r_{s l a b}\right|^{2}
$$

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab.

Kiessig fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{\text {slab }}=\left|r_{\text {slab }}\right|^{2}
$$

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. They have an oscillation frequency

$$
2 \pi / \Delta=0.092 \AA^{-1}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

$$
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
\begin{aligned}
r_{s l a b} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right)
\end{aligned}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{s l a b} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right)
\end{aligned}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \\
& & \\
& =r_{01}\left(1-e^{i Q \Delta}\right) &
\end{array}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \left|r_{01}\right| \ll 1
\end{array} \alpha>\alpha_{c}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}
\end{array}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{gathered}
q \gg 1 \\
\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}}
\end{gathered}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& q \gg 1 \\
&\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
& r_{01}= \frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
& \approx \frac{1}{\left(2 q_{0}\right)^{2}}
\end{aligned}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{gathered}
q \gg 1 \\
r_{01}=\frac{r_{01} \mid \ll 1 \quad \alpha>\alpha_{c}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
\approx \\
\frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}
\end{gathered}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlrl}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & & \left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01} & =\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) & & \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}
\end{array}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \left|r_{01}\right| \ll 1 \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}= \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) & \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right)
\end{array}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
& r_{\text {slab }}= \frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx \quad\left|r_{01}\right| \ll 1 \quad r_{01}\left(1-p^{2}\right) \quad r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
&=r_{01}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
& r_{\text {slab }} \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \\
& r_{\text {slab }}=-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
&=-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2}
\end{aligned}
$$

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad\left|r_{01}\right| \ll \\
& =r_{01}\left(1-e^{i Q \Delta}\right) \quad r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}= \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
& =-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
& r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right) \\
& r_{\text {slab }} \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
& r_{\text {slab }}=-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
& =-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad q \gg 1 \\
& =r_{01}\left(1-e^{i Q \Delta}\right) \quad\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)} \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
& \left.=-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2} \approx-i \frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
\sin \alpha & =r_{\text {thin slab }}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Multilayers in the kinematical regime

Multilayers in the kinematical regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.

r_{1} is the reflectivity of a single bilayer

Multilayers in the kinematical regime

> N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.

r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer

Multilayers in the kinematical regime

> N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.

r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Multilayers in the kinematical regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$
r_{N}(\zeta)=\sum_{\nu=0}^{N-1} r_{1}(\zeta) e^{i 2 \pi \zeta \nu} e^{-\beta \nu}
$$

Multilayers in the kinematical regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$
r_{N}(\zeta)=\sum_{\nu=0}^{N-1} r_{1}(\zeta) e^{i 2 \pi \zeta \nu} e^{-\beta \nu}=r_{1}(\zeta) \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$r_{1}(\zeta)=-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \int_{-\lceil\Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z$

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$$
r_{1}(\zeta)=-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z
$$

$$
=-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta \Gamma}-e^{-i \pi \zeta \Gamma}\right]
$$

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$$
\begin{array}{rlrl}
r_{1}(\zeta) & =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z & \\
& =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta \Gamma}-e^{-i \pi \zeta \Gamma}\right] & & e^{i x}-e^{-i x}=2 i \sin x \\
& Q=4 \pi \sin \theta / \lambda=2 \pi \zeta / \Lambda
\end{array}
$$

Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$$
\begin{array}{rlrl}
r_{1}(\zeta) & =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z & \\
& =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta \Gamma}-e^{-i \pi \zeta \Gamma}\right] & & e^{i x}-e^{-i x}=2 i \sin x \\
& Q=4 \pi \sin \theta / \lambda=2 \pi \zeta / \Lambda
\end{array}
$$

$$
r_{1}=-2 i r_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta}
$$

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}.

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 \operatorname{ir}_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

$$
\beta=2\left[\frac{\mu_{A}}{2} \frac{\Gamma \Lambda}{\sin \theta}+\frac{\mu_{B}}{2} \frac{(1-\Gamma) \Lambda}{\sin \theta}\right]
$$

Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{0} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

$$
\beta=2\left[\frac{\mu_{A}}{2} \frac{\Gamma \Lambda}{\sin \theta}+\frac{\mu_{B}}{2} \frac{(1-\Gamma) \Lambda}{\sin \theta}\right]=\frac{\Lambda}{\sin \theta}\left[\mu_{A} \Gamma+\mu_{B}(1-\Gamma)\right]
$$

Reflectivity calculation

Reflectivity calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks

Reflectivity calculation

- When $\zeta=Q \Lambda / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent

Reflectivity calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent
- This is effectively a diffraction grating for x-rays

Reflectivity calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent
- This is effectively a diffraction grating for x-rays
- Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors

Slab - multilayer comparison

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

This combines the Kiessig fringes from the entire multilayer and the interference obtained because of the bilayer repetition

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

This combines the Kiessig fringes from the entire multilayer and the interference obtained because of the bilayer repetition

However, the simple kinematical approximation fails at very low values of Q as can be seen in the figure

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

This combines the Kiessig fringes from the entire multilayer and the interference obtained because of the bilayer repetition

However, the simple kinematical approximation fails at very low values of Q as can be seen in the figure

An exact approach is required to give a solution which holds for all values of Q

Kinematical reflectivity from a multilayer

Using the kinematical approximation, we have calculated the reflectivity of a multilayer of slabs containing two contrasting elements

This combines the Kiessig fringes from the entire multilayer and the interference obtained because of the bilayer repetition

However, the simple kinematical approximation fails at very low values of Q as can be seen in the figure

An exact approach is required to give a solution which holds for all values of Q

This is Parratt's recursive approach and needs to be computed numerically

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
k_{z j}^{2}=\left(n_{j} k\right)^{2}-k_{x}^{2}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2}
\end{aligned}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j} \\
& =\sqrt{Q^{2}-8 k^{2} \delta_{j}+8 i k^{2} \beta_{j}}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ reflections is

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ to the substrate, where multiple reflections are not present

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the
$N^{\text {th }}$ layer, including multiple reflections is
The reflectivity from the top of the
$N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$ now calculated (note no prime!)

The recursive relation can be seen from the calculation of reflectivity of the next layer up

$$
r_{N-2, N-1}=\frac{r_{N-2, N-1}^{\prime}+r_{N-1, N} p_{N-1}^{2}}{1+r_{N-2, N-1}^{\prime} r_{N-1, N} p_{N-1}^{2}}
$$

Kinematical - Parratt comparison

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Peaks in kinematical calculation are somewhat higher reflectivity than true value.

