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• Area detectors

• Refraction and reflection

• Boundary conditions at an interface

• The Fresnel equations

• Reflectivity and Transmittivity

• Normalized q-coordinates

Reading Assignment: Chapter 3.4

Homework Assignment #02:
Problems to be provided
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HW #02

1. Knowing that the photoelectric absorption of an element scales as the
inverse of the energy cubed, calculate:

(a) the absorption coefficient at 10keV for copper when the value at 5keV
is 1698.3 cm−1;

(b) The actual absorption coefficient of copper at 10keV is 1942.1 cm−1,
why is this so different than your calculated value?

2. A 30 cm long, ionization chamber, filled with 80% helium and 20%
nitrogen gases at 1 atmosphere, is being used to measure the photon rate
(photons/sec) in a synchrotron beamline at 12 keV. If a current of 10 nA
is measured, what is the photon flux entering the ionization chamber?

3. A 5 cm deep ionization chamber is used to measure the fluorescence
from a sample containing arsenic (As). Using any noble gases or nitrogen,
determine a gas fill (at 1 atmosphere) for this chamber which absorbs at
least 60% of the incident photons. How does this change if you are
measuring the fluorescence from ruthenium (Ru)?
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HW #02

4. Calculate the critical angle of reflection of 10 keV and 30 keV x-rays
for:

(a) A slab of glass (SiO2);

(b) A thick chromium mirror;

(c) A thick platinum mirror.

(d) If the incident x-ray beam is 2 mm high, what length of mirror is
required to reflect the entire beam for each material?

5. Calculate the fraction of silver (Ag) fluorescence x-rays which are
absorbed in a 1 mm thick silicon (Si) detector and the charge pulse
expected for each absorbed photon. Repeat the calculation for a 1 mm
thick germanium (Ge) detector.
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Area detectors

Area detectors have been used for many years and include older
technologies such as 2D gas proportional detectors, image plates, and even
photographic film!

Will look carefully only at more modern technologies such as Charge
Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal
detector for an experiment are:

• Area - 20 cm × 20 cm is often standard

• Pixel size - 20 µm × 20 µm or larger is typical

• Detector speed - readouts of 5 ms to 1 s are available

• Dynamic range - 16 bits is typical, more is possible

The most advanced detectors can easily cost over a million dollars!
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CCD detectors - direct

One of the two configurations typical of CCD
detectors is direct measurement of x-rays

x-ray photon

Bulk silicon

depletion

region

10-20 µm

500 µm

oxide

layer

electrodes

pixel

the direct measurement
CCD is just a segmented
silicon detector

the x-ray deposits its en-
ergy directly in the de-
pletion region, creating
electron-hole pairs

the electrons and holes
are trapped and accumu-
late during the exposure
time

when readout starts, the charge is swept to the electrodes and read out,
consecutively, line-by-line

expensive to make very large, limited sensitivity to high energies
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CCD detectors - indirect

The largest area detectors are made using
the CCD in indirect mode

The CCD is coupled optically to a fiber
optic taper which ends at a large phosphor

When an x-ray is absorbed at the phos-
phor, visible light photons are emitted in
all directions

A fraction of the visible light is guided to
the CCD chip(s) at the end of the taper

This detector requires careful geomet-
ric corrections, particularly with multiple
CCD arrays

Pixel sizes are usually rather large (50 µm
× 50 µm)

phosphor
x-ray photon

fiber optic

taper

CCD
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Pixel array detectors - schematic

diode detection

layer

solder

bumps

CMOS electronics layer

The Pixel Array Detector combines
area detection with on-board elec-
tronics for fast signal processing

The diode layer absorbs x-rays and
the electron-hole pairs are immedi-
ately swept into the CMOS elec-
tronics layer

This permits fast processing and
possibly energy discrimination on a
per-pixel level
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Pixel array detectors - Pilatus

Pixel array detector with
1,000,000 pixels.

Each pixel has energy re-
solving capabilities & high speed
readout.

Silicon sensor limits energy
range of operation.

from Swiss Light Source
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High energy solutions

One of the major
problems with pixel
array detectors and
SDDs is the low ab-
sorption cross sec-
tion at high energies

One solution is to
use a semiconductor
other than Si, for
example Ge, GaAs
or, CdTe

The absorption can be significantly enhanced with these higher Z elements
while maintaining good energy discrimination capabilities.
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Refractive index in the x-ray region

When visible light passes from one medium to another, it changes
direction according to Snell’s Law which depends on the index of
refraction of the two media.

For visible light, the index of refraction of a transparent medium is always
greater than unity and this is exploited to create lenses and optical devices.

For x-rays, there is also an index of refraction but it is always slightly less
than unity, resulting in phenomena which can be used to create x-ray
optics and a host of experimental techniques.

The refraction and reflection of x-rays derive fundamentally from the
scattering of x-rays by electrons and the fact that the scattering factor is
negative, −r0.

Initially assume that all interfaces are perfectly flat and ignore all
absorption processes.
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Thin plate response - scattering approach

Consider a thin plate of thickness ∆ onto which x-rays are incident from a
point source S a perpendicular distance R0 away.

A detector is placed at
P, also a perpendicular distance R0 on the other side of the plate. We
consider a small volume at location (x , y) which scatters the x-rays.

S P

∆

R0 R0

x

The plate has electron density
ρ and the volume ∆dxdy con-
tains ρ∆dxdy electrons which
scatter the x-rays. The dis-
tance from S to the scatter-
ing volume is

R =
√
R2

0 + x2 + y2

R = R0

√
1 +

x2 + y2

R2
0

≈ R0

[
1 +

x2 + y2

2R2
0

]
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Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave
(x-ray) which travels from S → P through the scattering volume will have
an extra phase shift

S P

∆

R0 R0

x

R

φ(x , y) = 2k
x2+y2

2R2
0

=
x2+y2

R2
0

k

compared to a wave which
travels directly along the z-
axis. The wave which is scat-
tered through the volume will
have the form

dψP
S ≈

(
e ikR0

R0

)
(ρ∆dxdy)

(
−be

ikR0

R0

)
e iφ(x ,y)
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Thin plate response - scattering approach

dψP
S =

(
e ikR0

R0

)
ρ(∆dxdy)

(
−be

ikR0

R0

)
e iφ(x ,y)

ψP
S =

∫
dψP

S = −ρb∆
e i2kR0

R2
0

∫ ∞
−∞

e
i x

2+y2

R2
0

k
dxdy

= −ρb∆
e i2kR0

R2
0

(
i
πR0

k

)

ψP = ψP
0 + ψP

S

=
e i2kR0

2R0
− iρb∆

πR0

k

e i2kR0

R2
0

= ψP
0

[
1− i

2πρb∆

k

]

Integrate the scattered
wave over the entire
plate. This integral is
basically a Gaussian in-
tegral squared with an
imaginary (instead of
real) constant in the ex-
ponent and it gives∫ ∞
−∞

e
i x

2+y2

R2
0

k
dxdy = i

πR0

k

Thus the total wave
(electric field) at P can
be written
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Thin plate response - refraction approach

Now let’s look at this phenomenon from a different point of view, that of
refraction.

Assume that the wave passing through the plate simply gains a
phase shift because it passes through a medium compared to a wave which
does not have the plate present.

S P

∆

R0 R0

x

ψP

0

The phase shift depends on
the thickness and the differ-
ence between the index of re-
fraction of the medium and
that of vacuum

φ = 2π

(
n∆

λ
− ∆

λ

)
=

2π

λ
∆(n − 1) = k∆(n − 1)

The wave function at P is then:

ψP = ψP
0 e

i(n−1)k∆ = ψP
0 [1 + i(n − 1)k∆ + · · · ] ≈ ψP

0 [1 + i(n − 1)k∆]
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Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

]

Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2

= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

ψP = ψP
0

[
1− i

2πρb∆

k

] Refraction

ψP = ψP
0 [1 + i(n − 1)k∆]

By inspection we have

(n − 1)k∆ = −2πρb∆

k

n − 1 = −2πρb

k2

n = 1− 2πρb

k2
= 1− δ

C. Segre (IIT) PHYS 570 - Spring 2020 January 30, 2020 15 / 26



Index of refraction & critical angle

Now that we have an expression for the index of refraction, we can
examine the consequences and estimate it’s magnitude.

Consider an x-ray incident on an interface at angle α1 to the surface which
is refracted into the medium of index n2 at angle α2.

α

x

z

1
n1

2n

n1 cosα1 = n2 cosα2

cosα1 = n2 cosα2

cosα1 = (1− δ) cosα2

cosαc = 1− δ

Applying Snell’s Law, and assuming
that the incident medium is air (vac-
uum).

If we now apply the known form of
the index of refraction for the medium
(n2 = 1− δ).

When the incident angle becomes small
enough, there will be total external re-
flection
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Estimation of critical angle

For small angles, the cosine
function can expanded to give
a simple relation for the critical
angle

If δ ∼ 10−5, then the critical
angle is

1− δ = cosαc

1− δ = 1− αc
2

2
+ · · ·

1− δ ≈ 1− αc
2

2

δ ≈ αc
2

2

αc =
√

2δ

αc =
√

2× 10−5

= 4.5× 10−3 = 4.5 mrad

= 0.26◦
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.

Therefore, it is useful to replace the uniform charge distribution, ρ, with a
more realistic one, including the atom distribution ρa:

ψP = ψP
0

[
1− i

2πρb∆

k

]

ρ = ρaf
0(θ = 90◦) k = 2π/λ

ψP = ψP
0

[
1− i

λρaf
0r0∆

sin θ

]

ψP = ψP
0 [1− ig0] ≈ ψP

0 e
−ig0

This holds for forward scattering
(θ = 90◦ or ψ = 0◦) only, and a
correction term of sin θ is needed if
the viewing angle is different.

The second term is the first order
term in the expansion of a com-
plex exponential and thus is noth-
ing more than a phase shift to the
electromagnetic wave.
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Absorption term in n

Since the actual scattering factor of an atom has resonant (“anomalous”)
terms, f (Q) = f 0(Q) + f ′ + if ′′, we must include an absorption term in
the model for the index of refraction.

Begin with Beer’s Law for absorp-
tion

In the refractive approach, the
wave propagating in the medium is
modified by the index of refraction
k ′ = nk so that

The real exponential can be com-
pared with Beer’s Law, noting
that intensity is proportional to the
square of the wave function

n = 1− δ + iβ

I (z) = I0e
−µz

e inkz = e i(1−δ+iβ)kz

= e i(1−δ)kze−βkz

µ = 2βk → β =
µ

2k
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f ′′

term in the atomic scattering factor:

n = 1− 2πρar0
k2

[
f 0(Q) + f ′ + if ′′

]
= 1− 2πρar0

k2

[
f 0(Q) + f ′

]
− i

2πρar0
k2

f ′′

= 1− δ + iβ

Since f 0(0) � f ′ in the forward
direction, we have

In terms of the absorption coef-
ficient, µ, and the atomic cross-
section, σa

δ ≈ 2πρaf
0(0)r0

k2

β = −2πρaf
′′r0

k2
=

µ

2k

f ′′ = − k2

2πρar0

µ

2k

= − k

4πr0
σa
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Electromagnetic boundary conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

α

x

z
kI

which leads to conditions
on the amplitudes and the
wave vectors of the waves
at z = 0. Taking vector
components:

ψI = aI e
i ~kI ·~r incident wave

ψR = aRe
i ~kR ·~r reflected wave

ψT = aT e
i ~kT ·~r transmitted wave

aT = aI + aR

aT ~kT = aI ~kI + aR ~kR

aTkT cosα′ = aIkI cosα + aRkR cosα

− aTkT sinα′ = −aIkI sinα + aRkR sinα
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α α

α x

z
kI kR

kT

which leads to conditions
on the amplitudes and the
wave vectors of the waves
at z = 0. Taking vector
components:

ψI = aI e
i ~kI ·~r incident wave

ψR = aRe
i ~kR ·~r reflected wave

ψT = aT e
i ~kT ·~r transmitted wave

aT = aI + aR

aT ~kT = aI ~kI + aR ~kR
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Parallel projection & Snell’s Law

Starting with the equation for the
parallel projection of the field on
the surface and noting that

| ~kR | = |~kI | = k in vacuum

| ~kT | = nk in medium

Combining with the
amplitude equation
and cancelling k

aT = aI + aR

This simply results in
Snell’s Law which for
small angles can be ex-
panded.

Recalling that

αc =
√

2δ

aTkT cosα′ = aIkI cosα + aRkR cosα

aTnk cosα′ = aIk cosα + aRk cosα

(aI + aR)n cosα′ = (aI + aR) cosα

cosα = n cosα′

1− α2

2
= (1− δ + iβ)

(
1− α′ 2

2

)
− α2 = −α′ 2 − 2δ + 2iβ

α2 = α′ 2 + α2
c − 2iβ
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Perpendicular projection & Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

and
using the amplitude equation

aT = aI + aR

taking n ≈ 1

The Fresnel Equations
can now be derived

− aTkT sinα′ = −aIkI sinα + aRkR sinα

− aTnk sinα′ = −(aI − aR)k sinα

(aI + aR)n sinα′ = (aI − aR) sinα

aI − aR
aI + aR

=
n sinα′

sinα
≈ n

α′

α
≈ α′

α

aIα− aRα = aIα
′ + aRα

′

aI (α− α′) = aR(α + α′)

→ r

aI (α− α′) = (aT − aI )(α + α′)

→ t

r =
aR
aI

=
α− α′

α + α′
t =

aT
aI

=
2α

α + α′
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Reflectivity and transmittivity

r and t are called the reflection and
transmission coefficients, respectively.

The
reflectivity R = |r2| and transmittivity
T = |t2| are the squares of these quantities,
which are complex because α′ is complex.

α′ = Re(α′) + i Im(α′)

aT e
ikα′z = aT e ik Re(α′)z e−k Im(α′)z

Λ =
1

2k Im(α′)

r =
aR
aI

=
α− α′

α + α′

t =
aT
aI

=
2α

α + α′

In the z direction, the am-
plitude of the transmitted
wave has two terms with
the second one being the
attenuation of the wave in
the medium due to absorp-
tion. This attenuation is
characterized by a quan-
tity called the penetration
depth, Λ.
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Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is
called the wavevector transfer.

Q = 2k sinα ≈ 2kα

and for the critical angle

Qc = 2k sinαc ≈ 2kαc

in dimensionless units, these become

q =
Q

Qc
≈ 2k

Qc
α q′ =

Q ′

Qc
≈ 2k

Qc
α′

q is a convenient parameter to use because it is a combination of two
parameters which are often varied in experiments, the angle of incidence α
and the wavenumber (energy) of the x-ray, k .
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Defining equations in q

Start with the reduced ver-
sion of Snell’s Law

and mul-
tiply by a 1/α2

c = (2k/Qc)2.
Noting that

q =
2k

Qc
α

(
2k

Qc

)2

β =
4k2

Q2
c

µ

2k

=
2k

Q2
c

µ = bµ

α2 = α′ 2 + α2
c − 2iβ

(
2k

Qc

)2

α2 =

(
2k

Qc

)2 (
α′ 2 + α2

c − 2iβ
)

q2= q′ 2 + 1− 2ibµ

Similarly, we convert the reflection and
transmission coefficients.

r =
q − q′

q + q′
t =

2q

q + q′
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