Today's outline - January 30, 2020

Today's outline - January 30, 2020

- HW \#2

Today's outline - January 30, 2020

- HW \#2
- Area detectors

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Reading Assignment: Chapter 3.4

Today's outline - January 30, 2020

- HW \#2
- Area detectors
- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Reading Assignment: Chapter 3.4
Homework Assignment \#02:
Problems to be provided
due Tuesday, February 18, 2020

HW \#02

1. Knowing that the photoelectric absorption of an element scales as the inverse of the energy cubed, calculate:
(a) the absorption coefficient at 10 keV for copper when the value at 5 keV is $1698.3 \mathrm{~cm}^{-1}$;
(b) The actual absorption coefficient of copper at 10 keV is $1942.1 \mathrm{~cm}^{-1}$, why is this so different than your calculated value?
2. A 30 cm long, ionization chamber, filled with 80% helium and 20% nitrogen gases at 1 atmosphere, is being used to measure the photon rate (photons $/ \mathrm{sec}$) in a synchrotron beamline at 12 keV . If a current of 10 nA is measured, what is the photon flux entering the ionization chamber?
3. A 5 cm deep ionization chamber is used to measure the fluorescence from a sample containing arsenic (As). Using any noble gases or nitrogen, determine a gas fill (at 1 atmosphere) for this chamber which absorbs at least 60% of the incident photons. How does this change if you are measuring the fluorescence from ruthenium (Ru)?

HW \#02

4. Calculate the critical angle of reflection of 10 keV and 30 keV x-rays for:
(a) A slab of glass $\left(\mathrm{SiO}_{2}\right)$;
(b) A thick chromium mirror;
(c) A thick platinum mirror.
(d) If the incident x-ray beam is 2 mm high, what length of mirror is required to reflect the entire beam for each material?
5. Calculate the fraction of silver (Ag) fluorescence x-rays which are absorbed in a 1 mm thick silicon (Si) detector and the charge pulse expected for each absorbed photon. Repeat the calculation for a 1 mm thick germanium (Ge) detector.

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

- Area - $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is often standard

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

- Area - $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is often standard
- Pixel size - $20 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ or larger is typical

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

- Area - $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is often standard
- Pixel size - $20 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ or larger is typical
- Detector speed - readouts of 5 ms to 1 s are available

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

- Area $-20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is often standard
- Pixel size - $20 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ or larger is typical
- Detector speed - readouts of 5 ms to 1 s are available
- Dynamic range - 16 bits is typical, more is possible

Area detectors

Area detectors have been used for many years and include older technologies such as 2D gas proportional detectors, image plates, and even photographic film!

Will look carefully only at more modern technologies such as Charge Coupled Device (CCD) based detectors and active pixel array detectors

The basic criteria which need to be evaluated in order to choose the ideal detector for an experiment are:

- Area $-20 \mathrm{~cm} \times 20 \mathrm{~cm}$ is often standard
- Pixel size - $20 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ or larger is typical
- Detector speed - readouts of 5 ms to 1 s are available
- Dynamic range - 16 bits is typical, more is possible

The most advanced detectors can easily cost over a million dollars!

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays
the direct measurement CCD is just a segmented silicon detector

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays

the direct measurement CCD is just a segmented silicon detector
the x-ray deposits its energy directly in the depletion region, creating electron-hole pairs

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays

the direct measurement CCD is just a segmented silicon detector
the x-ray deposits its energy directly in the depletion region, creating electron-hole pairs
the electrons and holes are trapped and accumulate during the exposure time

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays

the direct measurement CCD is just a segmented silicon detector
the x-ray deposits its energy directly in the depletion region, creating electron-hole pairs
the electrons and holes are trapped and accumulate during the exposure time
when readout starts, the charge is swept to the electrodes and read out, consecutively, line-by-line

CCD detectors - direct

One of the two configurations typical of CCD detectors is direct measurement of x-rays

the direct measurement CCD is just a segmented silicon detector
the x-ray deposits its energy directly in the depletion region, creating electron-hole pairs
the electrons and holes are trapped and accumulate during the exposure time
when readout starts, the charge is swept to the electrodes and read out, consecutively, line-by-line
expensive to make very large, limited sensitivity to high energies

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

The CCD is coupled optically to a fiber optic taper which ends at a large phosphor

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

The CCD is coupled optically to a fiber optic taper which ends at a large phosphor When an x-ray is absorbed at the phosphor, visible light photons are emitted in all directions

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

The CCD is coupled optically to a fiber optic taper which ends at a large phosphor When an x-ray is absorbed at the phosphor, visible light photons are emitted in all directions

A fraction of the visible light is guided to the CCD chip(s) at the end of the taper

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

The CCD is coupled optically to a fiber optic taper which ends at a large phosphor When an x-ray is absorbed at the phosphor, visible light photons are emitted in all directions

A fraction of the visible light is guided to the CCD chip(s) at the end of the taper

This detector requires careful geometric corrections, particularly with multiple CCD arrays

CCD detectors - indirect

The largest area detectors are made using the CCD in indirect mode

The CCD is coupled optically to a fiber optic taper which ends at a large phosphor When an x-ray is absorbed at the phosphor, visible light photons are emitted in all directions

A fraction of the visible light is guided to the CCD chip(s) at the end of the taper

This detector requires careful geometric corrections, particularly with multiple CCD arrays

Pixel sizes are usually rather large (50 $\mu \mathrm{m}$
 $\times 50 \mu \mathrm{~m}$)

Pixel array detectors - schematic

The Pixel Array Detector combines area detection with on-board electronics for fast signal processing

Pixel array detectors - schematic

The Pixel Array Detector combines area detection with on-board electronics for fast signal processing

Pixel array detectors - schematic

The Pixel Array Detector combines area detection with on-board electronics for fast signal processing

The diode layer absorbs x-rays and the electron-hole pairs are immediately swept into the CMOS electronics layer

Pixel array detectors - schematic

The Pixel Array Detector combines area detection with on-board electronics for fast signal processing

The diode layer absorbs x-rays and the electron-hole pairs are immediately swept into the CMOS electronics layer

This permits fast processing and possibly energy discrimination on a per-pixel level

Pixel array detectors - Pilatus

> Pixel array detector with $1,000,000$ pixels.

Each pixel has energy resolving capabilities \& high speed readout.

Silicon sensor limits energy range of operation.
from Swiss Light Source

High energy solutions

One of the major problems with pixel array detectors and SDDs is the low absorption cross section at high energies

High energy solutions

One of the major problems with pixel array detectors and SDDs is the low absorption cross section at high energies

One solution is to use a semiconductor other than Si , for example Ge , GaAs or, CdTe

High energy solutions

One of the major problems with pixel array detectors and SDDs is the low absorption cross section at high energies

One solution is to use a semiconductor other than Si , for example Ge, GaAs or, CdTe

The absorption can be significantly enhanced with these higher Z elements while maintaining good energy discrimination capabilities.

Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction according to Snell's Law which depends on the index of refraction of the two media.

Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction according to Snell's Law which depends on the index of refraction of the two media.

For visible light, the index of refraction of a transparent medium is always greater than unity and this is exploited to create lenses and optical devices.

Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction according to Snell's Law which depends on the index of refraction of the two media.

For visible light, the index of refraction of a transparent medium is always greater than unity and this is exploited to create lenses and optical devices.

For x-rays, there is also an index of refraction but it is always slightly less than unity, resulting in phenomena which can be used to create x-ray optics and a host of experimental techniques.

Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction according to Snell's Law which depends on the index of refraction of the two media.

For visible light, the index of refraction of a transparent medium is always greater than unity and this is exploited to create lenses and optical devices.

For x-rays, there is also an index of refraction but it is always slightly less than unity, resulting in phenomena which can be used to create x-ray optics and a host of experimental techniques.
The refraction and reflection of x-rays derive fundamentally from the scattering of x-rays by electrons and the fact that the scattering factor is negative, $-r_{0}$.

Refractive index in the x-ray region

When visible light passes from one medium to another, it changes direction according to Snell's Law which depends on the index of refraction of the two media.

For visible light, the index of refraction of a transparent medium is always greater than unity and this is exploited to create lenses and optical devices.

For x-rays, there is also an index of refraction but it is always slightly less than unity, resulting in phenomena which can be used to create x-ray optics and a host of experimental techniques.
The refraction and reflection of x-rays derive fundamentally from the scattering of x-rays by electrons and the fact that the scattering factor is negative, $-r_{0}$.
Initially assume that all interfaces are perfectly flat and ignore all absorption processes.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{0}^{2}+x^{2}+y^{2}}
$$

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{0}^{2}+x^{2}+y^{2}}
$$

$$
R=R_{0} \sqrt{1+\frac{x^{2}+y^{2}}{R_{0}^{2}}}
$$

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{0} away. A detector is placed at P, also a perpendicular distance R_{0} on the other side of the plate. We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{0}^{2}+x^{2}+y^{2}}
$$

$$
R=R_{0} \sqrt{1+\frac{x^{2}+y^{2}}{R_{0}^{2}}} \approx R_{0}\left[1+\frac{x^{2}+y^{2}}{2 R_{0}^{2}}\right]
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k$
compared to a wave which travels directly along the z axis.

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k$
compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k$
compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)(\rho \Delta d x d y)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)(\rho \Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{0}^{2}}=\frac{x^{2}+y^{2}}{R_{0}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)(\rho \Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)}
$$

Thin plate response - scattering approach

$$
d \psi_{S}^{P}=\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)}
$$

Thin plate response - scattering approach

$$
d \psi_{S}^{P}=\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \begin{aligned}
& \text { Integrate the scattered } \\
& \text { wave over the entire } \\
& \text { plate. }
\end{aligned}
$$

Thin plate response - scattering approach

$$
\begin{aligned}
& d \psi_{S}^{P}=\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \\
& \psi_{S}^{P}=\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y
\end{aligned}
$$

Integrate the scattered wave over the entire plate. This integral is basically a Gaussian integral squared with an imaginary (instead of real) constant in the exponent and it gives

Thin plate response - scattering approach

$$
\begin{aligned}
& d \psi_{S}^{P}=\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \\
& \psi_{S}^{P}=\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y
\end{aligned}
$$

Integrate the scattered wave over the entire plate. This integral is basically a Gaussian integral squared with an imaginary (instead of real) constant in the exponent and it gives

$$
\int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}
$$

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}\left(i \frac{\pi R_{0}}{k}\right)
\end{aligned}
$$

Integrate the scattered wave over the entire plate. This integral is basically a Gaussian integral squared with an imaginary (instead of real) constant in the exponent and it gives

$$
\int_{-\infty}^{\infty} e^{\frac{i x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}
$$

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}\left(i \frac{\pi R_{0}}{k}\right)
\end{aligned}
$$

Integrate the scattered wave over the entire plate. This integral is basically a Gaussian integral squared with an imaginary (instead of real) constant in the exponent and it gives

$$
\int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}
$$

Thus the total wave
(electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}\left(i \frac{\pi R_{0}}{k}\right)
\end{aligned}
$$

Integrate the scattered wave over the entire plate. This integral is basically a Gaussian integral squared with an imaginary (instead of real) constant in the exponent and it gives

$$
\psi^{P}=\psi_{0}^{P}+\psi_{S}^{P}
$$

$\int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}$
Thus the total wave (electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{array}{rlrl}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)} \begin{array}{ll}
\text { Integrate the scattered } \\
\text { wave over the entire } \\
\text { plate. This integral is } \\
\text { basically a Gaussian in- }
\end{array} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{i^{2}+y^{2}}{R_{0}^{2}} k} d x d y & \begin{array}{l}
\text { tegral squared with an } \\
\text { imaginary (instead of }
\end{array} \\
& =-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}\left(i \frac{\pi R_{0}}{k}\right) & \begin{array}{l}
\text { real) constant in the ex- } \\
\text { ponent and it gives }
\end{array} \\
\psi^{P} & =\psi_{0}^{P}+\psi_{S}^{P} & \int_{-\infty}^{\infty} e^{i x^{\frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}}
\end{array}
$$

$$
=\frac{e^{i 2 k R_{0}}}{2 R_{0}}-i \rho b \Delta \frac{\pi R_{0}}{k} \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}
$$

Thus the total wave (electric field) at P can

 be written
Thin plate response - scattering approach

$$
d \psi_{S}^{P}=\left(\frac{e^{i k R_{0}}}{R_{0}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)}
$$

Integrate the scattered wave over the entire plate. This integral is

$$
\psi_{S}^{P}=\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y
$$ basically a Gaussian integral squared with an imaginary (instead of

$$
=-\rho b \Delta \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}\left(i \frac{\pi R_{0}}{k}\right)
$$ real) constant in the exponent and it gives

$$
\psi^{P}=\psi_{0}^{P}+\psi_{S}^{P}
$$

$\int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y=i \frac{\pi R_{0}}{k}$

$$
=\frac{e^{i 2 k R_{0}}}{2 R_{0}}-i \rho b \Delta \frac{\pi R_{0}}{k} \frac{e^{i 2 k R_{0}}}{R_{0}^{2}}
$$

Thus the total wave

$$
=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]
$$ (electric field) at P can be written

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction.

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=2 \pi\left(\frac{\Delta}{\lambda^{\prime}}-\frac{\Delta}{\lambda}\right)
$$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right)
$$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)
\end{aligned}
$$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)=k \Delta(n-1)
\end{aligned}
$$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)=k \Delta(n-1)
\end{aligned}
$$

The wave function at P is then:

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)=k \Delta(n-1)
\end{aligned}
$$

The wave function at P is then:
$\psi^{P}=\psi_{0}^{P} e^{i(n-1) k \Delta}$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)=k \Delta(n-1)
\end{aligned}
$$

The wave function at P is then:
$\psi^{P}=\psi_{0}^{P} e^{i(n-1) k \Delta}=\psi_{0}^{P}[1+i(n-1) k \Delta+\cdots]$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\begin{aligned}
\phi & =2 \pi\left(\frac{n \Delta}{\lambda}-\frac{\Delta}{\lambda}\right) \\
& =\frac{2 \pi}{\lambda} \Delta(n-1)=k \Delta(n-1)
\end{aligned}
$$

The wave function at P is then:

$$
\psi^{P}=\psi_{0}^{P} e^{i(n-1) k \Delta}=\psi_{0}^{P}[1+i(n-1) k \Delta+\cdots] \approx \psi_{0}^{P}[1+i(n-1) k \Delta]
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Scattering

Refraction

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{0}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{gathered}
\text { Scattering } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]
\end{gathered}
$$

By inspection we have

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{0}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
(n-1) k \Delta=-\frac{2 \pi \rho b \Delta}{k}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{0}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}}
\end{aligned}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{0}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}} \\
n & =1-\frac{2 \pi \rho b}{k^{2}}
\end{aligned}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{0}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}} \\
n & =1-\frac{2 \pi \rho b}{k^{2}}=1-\delta
\end{aligned}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law, and assuming that the incident medium is air (vacuum).

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2}
\end{aligned}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law, and assuming that the incident medium is air (vacuum).

If we now apply the known form of the index of refraction for the medium ($\left.n_{2}=1-\delta\right)$.

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =(1-\delta) \cos \alpha_{2}
\end{aligned}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law, and assuming

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =(1-\delta) \cos \alpha_{2} \\
\cos \alpha_{c} & =1-\delta
\end{aligned}
$$

that the incident medium is air (vacuum).

If we now apply the known form of
the index of refraction for the medium
If we now apply the known form of
the index of refraction for the medium ($\left.n_{2}=1-\delta\right)$.

When the incident angle becomes small
enough, there will be total external re-
When the incident angle becomes small
enough, there will be total external reflection

Estimation of critical angle

$$
1-\delta=\cos \alpha_{c}
$$

Estimation of critical angle

$$
\begin{array}{ll}
& 1-\delta=\cos \alpha_{c} \\
\text { For small angles, the cosine } & 1-\delta=1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
\text { function can expanded }
\end{array}
$$

Estimation of critical angle

$$
\begin{aligned}
& 1-\delta=\cos \alpha_{c} \\
& 1-\delta=1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
& 1-\delta \approx 1-\frac{\alpha_{c}{ }^{2}}{2}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\alpha_{c}=\sqrt{2 \times 10^{-5}}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\begin{aligned}
\alpha_{c} & =\sqrt{2 \times 10^{-5}} \\
& =4.5 \times 10^{-3}=4.5 \mathrm{mrad}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\begin{aligned}
\alpha_{c} & =\sqrt{2 \times 10^{-5}} \\
& =4.5 \times 10^{-3}=4.5 \mathrm{mrad} \\
& =0.26^{\circ}
\end{aligned}
$$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
$\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :
$\psi^{P}=\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid. Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right)
\end{aligned}
$$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid. Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right)
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid. Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.
$\psi^{P}=\psi_{0}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{0} \Delta}{\sin \theta}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.
$\psi^{P}=\psi_{0}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{0} \Delta}{\sin \theta}\right]$
$\psi^{P}=\psi_{0}^{P}\left[1-i g_{0}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda \\
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{0} \Delta}{\sin \theta}\right] \\
\psi^{P} & =\psi_{0}^{P}\left[1-i g_{0}\right]
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

The second term is the first order term in the expansion of a complex exponential and thus is nothing more than a phase shift to the electromagnetic wave.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda \\
\psi^{P} & =\psi_{0}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{0} \Delta}{\sin \theta}\right] \\
\psi^{P} & =\psi_{0}^{P}\left[1-i g_{0}\right] \approx \psi_{0}^{P} e^{-i g_{0}}
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

The second term is the first order term in the expansion of a complex exponential and thus is nothing more than a phase shift to the electromagnetic wave.

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

$$
n=1-\delta+i \beta
$$

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$

tion

$$
I(z)=I_{0} e^{-\mu z}
$$

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

In the refractive approach, the

$$
I(z)=I_{0} e^{-\mu z}
$$

wave propagating in the medium is modified by the index of refraction $k^{\prime}=n k$ so that

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.
Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

In the refractive approach, the

$$
\begin{aligned}
& I(z)=I_{0} e^{-\mu z} \\
& e^{i n k z}=e^{i(1-\delta+i \beta) k z}
\end{aligned}
$$ $k^{\prime}=n k$ so that

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.
Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

In the refractive approach, the

$$
\begin{aligned}
I(z) & =I_{0} e^{-\mu z} \\
e^{i n k z} & =e^{i(1-\delta+i \beta) k z} \\
& =e^{i(1-\delta) k z} e^{-\beta k z}
\end{aligned}
$$

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.
Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

In the refractive approach, the wave propagating in the medium is modified by the index of refraction $k^{\prime}=n k$ so that

$$
\begin{aligned}
I(z) & =I_{0} e^{-\mu z} \\
e^{i n k z} & =e^{i(1-\delta+i \beta) k z} \\
& =e^{i(1-\delta) k z} e^{-\beta k z}
\end{aligned}
$$

The real exponential can be compared with Beer's Law, noting that intensity is proportional to the square of the wave function

Absorption term in n

Since the actual scattering factor of an atom has resonant ("anomalous") terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.
Begin with Beer's Law for absorp-

$$
n=1-\delta+i \beta
$$ tion

In the refractive approach, the wave propagating in the medium is modified by the index of refraction $k^{\prime}=n k$ so that

$$
\begin{aligned}
I(z) & =I_{0} e^{-\mu z} \\
e^{i n k z} & =e^{i(1-\delta+i \beta) k z} \\
& =e^{i(1-\delta) k z} e^{-\beta k z}
\end{aligned}
$$

The real exponential can be compared with Beer's Law, noting that intensity is proportional to the

$$
\mu=2 \beta k \rightarrow \beta=\frac{\mu}{2 k}
$$ square of the wave function

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
n=1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right]
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad \delta
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad \delta \quad i \beta
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

$$
\delta \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

$$
\begin{aligned}
& \delta \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}} \\
& \beta=-\frac{2 \pi \rho_{a} f^{\prime \prime} r_{0}}{k^{2}}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

$$
\begin{aligned}
& \delta \approx \frac{2 \pi \rho_{\mathrm{a}} f^{0}(0) r_{0}}{k^{2}} \\
& \beta=-\frac{2 \pi \rho_{\mathrm{a}} f^{\prime \prime} r_{0}}{k^{2}}=\frac{\mu}{2 k}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad \delta \quad i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

In terms of the absorption coefficient, μ

$$
\begin{aligned}
\delta & \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}} \\
\beta & =-\frac{2 \pi \rho_{a} f^{\prime \prime} r_{0}}{k^{2}}=\frac{\mu}{2 k} \\
f^{\prime \prime} & =-\frac{k^{2}}{2 \pi \rho_{a} r_{0}} \frac{\mu}{2 k}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{0}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

In terms of the absorption coefficient, μ, and the atomic crosssection, σ_{a}

$$
\begin{aligned}
\delta & \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}} \\
\beta & =-\frac{2 \pi \rho_{a} f^{\prime \prime} r_{0}}{k^{2}}=\frac{\mu}{2 k} \\
f^{\prime \prime} & =-\frac{k^{2}}{2 \pi \rho_{a} r_{0}} \frac{\mu}{2 k} \\
& =-\frac{k}{4 \pi r_{0}} \sigma_{a}
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \quad \text { incident wave }
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \vec{k}_{R} \cdot \vec{r}} \\
& \text { incident wave } \\
& \text { reflected wave }
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { transmitted wave }
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \vec{k}_{R} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$.

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave }^{\text {reflected wave }} \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the

$$
a_{T}=a_{l}+a_{R}
$$ wave vectors of the waves at $z=0$.

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave }^{\text {reflected wave }} \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$.

$$
a_{T}=a_{l}+a_{R}
$$

$$
a_{T} \overrightarrow{k_{T}}=a_{l} \overrightarrow{k_{I}}+a_{R} \overrightarrow{k_{R}}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave }^{\text {reflected wave }} \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$. Taking vector

$$
a_{T}=a_{l}+a_{R}
$$ components:

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the

$$
a_{T}=a_{l}+a_{R}
$$ wave vectors of the waves at $z=0$. Taking vector

$$
a_{T} \overrightarrow{k_{T}}=a_{l} \overrightarrow{k_{I}}+a_{R} \overrightarrow{k_{R}}
$$ components:

$$
a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the

$$
a_{T}=a_{l}+a_{R}
$$ wave vectors of the waves at $z=0$. Taking vector

$$
a_{T} \overrightarrow{k_{T}}=a_{l} \overrightarrow{k_{I}}+a_{R} \overrightarrow{k_{R}}
$$ components:

$$
\begin{aligned}
a_{T} k_{T} \cos \alpha^{\prime} & =a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha \\
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on
the surface and noting that

$$
a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on

$$
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right|=k \quad \text { in vacuum }
$$

the surface and noting that

$$
a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{/}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

$$
a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{I} k \cos \alpha+a_{R} k \cos \alpha$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k
$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$

$$
a_{T}=a_{l}+a_{R}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k
$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{I} k \cos \alpha+a_{R} k \cos \alpha$

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{I}+a_{R}\right) \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k
$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$

$$
a_{T}=a_{l}+a_{R}
$$

This simply results in Snell's Law

$$
\begin{aligned}
\left(a_{l}+a_{R}\right) n \cos \alpha^{\prime} & =\left(a_{l}+a_{R}\right) \cos \alpha \\
\cos \alpha & =n \cos \alpha^{\prime}
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k
$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$

$$
a_{T}=a_{l}+a_{R}
$$

This simply results in Snell's Law which for

$$
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{I}+a_{R}\right) \cos \alpha
$$

$$
\cos \alpha=n \cos \alpha^{\prime}
$$ panded.

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k

$$
\begin{aligned}
a_{T} k_{T} \cos \alpha^{\prime} & =a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha \\
a_{T} n k \cos \alpha^{\prime} & =a_{l} k \cos \alpha+a_{R} k \cos \alpha
\end{aligned}
$$

$$
a_{T}=a_{l}+a_{R}
$$

This simply results in Snell's Law which for small angles can be expanded.

$$
\begin{aligned}
\left(a_{l}+a_{R}\right) n \cos \alpha^{\prime} & =\left(a_{l}+a_{R}\right) \cos \alpha \\
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right)
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k

$$
\begin{aligned}
a_{T} k_{T} \cos \alpha^{\prime} & =a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha \\
a_{T} n k \cos \alpha^{\prime} & =a_{l} k \cos \alpha+a_{R} k \cos \alpha
\end{aligned}
$$

$$
a_{T}=a_{l}+a_{R}
$$

This simply results in Snell's Law which for small angles can be expanded.

$$
\begin{aligned}
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime} & =\left(a_{I}+a_{R}\right) \cos \alpha \\
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right) \\
-\alpha^{2} & =-\alpha^{\prime 2}-2 \delta+2 i \beta
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{array}{ll}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right|=k & \\
\text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right|=n k & \\
\text { in medium }
\end{array}
$$

Combining with the amplitude equation and cancelling k
$a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha$
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$

$$
a_{T}=a_{l}+a_{R}
$$

This simply results in Snell's Law which for small angles can be expanded.

Recalling that

$$
\alpha_{c}=\sqrt{2 \delta}
$$

$$
\begin{aligned}
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime} & =\left(a_{I}+a_{R}\right) \cos \alpha \\
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right) \\
-\alpha^{2} & =-\alpha^{\prime 2}-2 \delta+2 i \beta \\
\alpha^{2} & =\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

$$
-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

$$
\begin{aligned}
& -a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
& -a_{T} n k \sin \alpha^{\prime}=-\left(a_{l}-a_{R}\right) k \sin \alpha
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
\begin{aligned}
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
-a_{T} n k \sin \alpha^{\prime} & =-\left(a_{l}-a_{R}\right) k \sin \alpha \\
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime} & =\left(a_{l}-a_{R}\right) \sin \alpha \\
\frac{a_{l}-a_{R}}{a_{l}+a_{R}} & =\frac{n \sin \alpha^{\prime}}{\sin \alpha}
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
\begin{aligned}
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
-a_{T} n k \sin \alpha^{\prime} & =-\left(a_{l}-a_{R}\right) k \sin \alpha \\
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime} & =\left(a_{l}-a_{R}\right) \sin \alpha \\
\frac{a_{l}-a_{R}}{a_{l}+a_{R}} & =\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha}
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{I}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{I}-a_{R}\right) \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations can now be derived

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$

The Fresnel Equations can now be derived

$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

$$
a_{\jmath} \alpha-a_{R} \alpha=a_{\jmath} \alpha^{\prime}+a_{R} \alpha^{\prime}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$

The Fresnel Equations can now be derived
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right)
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha
$$

taking $n \approx 1$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=\left(a_{T}-a_{l}\right)\left(\alpha+\alpha^{\prime}\right)
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=\left(a_{T}-a_{l}\right)\left(\alpha+\alpha^{\prime}\right) \rightarrow t
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \quad t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively.

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \ln \left(\alpha^{\prime}\right) z}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms with the second one being the attenuation of the wave in the medium due to absorption.

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\begin{gathered}
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{lm}\left(\alpha^{\prime}\right) \\
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
\end{gathered}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
$$

$$
\Lambda=\frac{1}{2 k \operatorname{lm}\left(\alpha^{\prime}\right)}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms with the second one being the attenuation of the wave in the medium due to absorption. This attenuation is characterized by a quantity called the penetration depth, Λ.

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha
$$

Wavevector transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha \quad q^{\prime}=\frac{Q^{\prime}}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

q is a convenient parameter to use because it is a combination of two parameters which are often varied in experiments, the angle of incidence α and the wavenumber (energy) of the x-ray, k.

Defining equations in q

Start with the reduced version of Snell's Law

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$.

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$.

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha \quad\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
\begin{aligned}
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
\begin{aligned}
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\begin{aligned}
q & =\frac{2 k}{Q_{c}} \alpha \\
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Similarly, we convert the reflection and transmission coefficients.

Defining equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
\begin{aligned}
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Similarly, we convert the reflection and transmission coefficients.

$$
r=\frac{q-q^{\prime}}{q+q^{\prime}} \quad t=\frac{2 q}{q+q^{\prime}}
$$

