Today's outline - January 23, 2020

Today's outline - January 23, 2020

- The bending magnet source

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy
- Power and flux

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization
- Insertion devices

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization
- Insertion devices
- Undulator parameters

Today's outline - January 23, 2020

- The bending magnet source
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization
- Insertion devices
- Undulator parameters

Homework Assignment \#01:
Chapter Chapter 2: 2,3,5,6,8
due Thursday, January 30, 2020

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

This approximation gives a clear idea of how an electron passing through a bending magnet can emit x-ray radiation in the lab frame.

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

This approximation gives a clear idea of how an electron passing through a bending magnet can emit x-ray radiation in the lab frame.

It can also be used to calculate the off-axis emission spectrum.

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

This approximation gives a clear idea of how an electron passing through a bending magnet can emit x-ray radiation in the lab frame.

It can also be used to calculate the off-axis emission spectrum.

However, this is only qualitative, and it is important to be able to calculate the spectrum of radiation from a bending magnet source as a function of observation angle accurately.

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

This approximation gives a clear idea of how an electron passing through a bending magnet can emit x-ray radiation in the lab frame.

It can also be used to calculate the off-axis emission spectrum.

However, this is only qualitative, and it is important to be able to calculate the spectrum of radiation from a bending magnet source as a function of observation angle accurately.

Recall that the compression ratio for the segmented arc is

Segmented arc review

The first approximation to a bending magnet source is the segmented arc

This approximation gives a clear idea of how an electron passing through a bending magnet can emit x-ray radiation in the lab frame.

It can also be used to calculate the off-axis emission spectrum.

However, this is only qualitative, and it is important to be able to calculate the spectrum of radiation from a bending magnet source as a function of observation angle accurately.

Recall that the compression ratio for the segmented arc is

$$
\frac{\Delta t}{\Delta t^{\prime}}=(1-\beta \cos \alpha)
$$

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}
$$

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B
$$

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

Curved arc emission

$$
e v B=m \frac{v^{2}}{\rho}
$$

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

Curved arc emission

But instantaneously, the compression ratio is:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

this allows us to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

$$
e v B=m \frac{v^{2}}{\rho}
$$

$$
m v=p=\rho e B
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{\operatorname{ecB}[\mathrm{T}]}
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{\mathrm{ec} B[\mathrm{~T}]}=\frac{\mathcal{E}[\mathrm{eV}]}{c B[\mathrm{~T}]}
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{e c B[\mathrm{~T}]}=\frac{\mathcal{E}[\mathrm{eV}]}{c B[\mathrm{~T}]}=3.3 \frac{\mathcal{E}[\mathrm{GeV}]}{B[\mathrm{~T}]}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory,

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame).

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}=\frac{1}{\gamma^{3} \omega_{0}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}=\frac{1}{\gamma^{3} \omega_{0}}
$$

The Fourier transform of this pulse is the spectrum of the radiation from the bending magnet.

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar \gamma^{3} \frac{c e B}{\gamma m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} \hbar c e B \frac{\gamma^{2}}{m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} \hbar c e B \frac{\gamma^{2}}{m c}=\frac{3 \hbar e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} \hbar c e B \frac{\gamma^{2}}{m c}=\frac{3 \hbar e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

converting to storage ring units

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{0}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{0}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \hbar \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} \hbar c e B \frac{\gamma^{2}}{m c}=\frac{3 \hbar e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

converting to storage ring units

$$
\mathcal{E}_{c}[\mathrm{keV}]=0.665 \mathcal{E}^{2}[\mathrm{GeV}] B[\mathrm{~T}]
$$

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve
$1.33 \times 10^{13} \mathcal{E}^{2} I\left(\frac{\omega}{\omega_{c}}\right)^{2} K_{2 / 3}^{2}\left(\frac{\omega}{2 \omega_{c}}\right)$
where $K_{2 / 3}$ is a modified Bessel function of the second kind.

Power from a bending magnet

The radiated power is given in storage ring units by:

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \operatorname{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

$$
P=1.266(6 \mathrm{GeV})^{2}
$$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

$$
P=1.266(6 \mathrm{GeV})^{2}(0.8 \mathrm{~T})^{2}
$$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

$$
P=1.266(6 \mathrm{GeV})^{2}(0.8 \mathrm{~T})^{2}\left(1.24 \times 10^{-3} \mathrm{~m}\right)
$$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

$$
P=1.266(6 \mathrm{GeV})^{2}(0.8 \mathrm{~T})^{2}\left(1.24 \times 10^{-3} \mathrm{~m}\right)(0.2 \mathrm{~A})
$$

Power from a bending magnet

The radiated power is given in storage ring units by:

$$
P[\mathrm{~kW}]=1.266 \mathcal{E}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

where L is the length of the arc visible to the observer and I is the storage ring current.
We can calculate this for the ESRF where $\mathcal{E}=6 \mathrm{GeV}, B=0.8 \mathrm{~T}$, $\mathcal{E}_{c}=19.2 \mathrm{keV}$ and the bending radius $\rho=24.8 \mathrm{~m}$. Assuming that the aperture is $1 \mathrm{~mm}^{2}$ at a distance of 20 m , the angular aperture is $1 / 20=0.05 \mathrm{mrad}$ and the flux at the characteristic energy is given by:

Flux $=\left(1.95 \times 10^{13}\right)\left(0.05^{2} \mathrm{mrad}^{2}\right)\left(6^{2} \mathrm{GeV}^{2}\right)(0.2 \mathrm{~A})=3.5 \times 10^{11} \mathrm{ph} / \mathrm{s} / 0.1 \% \mathrm{BW}$
The arc length is $L=(24.8 \mathrm{~m})(0.05 \mathrm{mrad})=1.24 \mathrm{~mm}$ and we have:

$$
P=1.266(6 \mathrm{GeV})^{2}(0.8 \mathrm{~T})^{2}\left(1.24 \times 10^{-3} \mathrm{~m}\right)(0.2 \mathrm{~A})=7.3 \mathrm{~W}
$$

Polarization

A bending magnet also produces circularly polarized radiation

Polarization

A bending magnet also produces circularly polarized radiation

- If the observer is in the plane of the electron orbit, the electron motion looks like a half period of linear sinusoidal motion

Polarization

A bending magnet also produces circularly polarized radiation

- If the observer is in the plane of the electron orbit, the electron motion looks like a half period of linear sinusoidal motion
- From above, the motion looks like an arc in the clockwise direction

Polarization

A bending magnet also produces circularly polarized radiation

- If the observer is in the plane of the electron orbit, the electron motion looks like a half period of linear sinusoidal motion
- From above, the motion looks like an arc in the clockwise direction
- From below, the motion looks like an arc in the counterclockwise direction

Polarization

A bending magnet also produces circularly polarized radiation

- If the observer is in the plane of the electron orbit, the electron motion looks like a half period of linear sinusoidal motion
- From above, the motion looks like an arc in the clockwise direction
- From below, the motion looks like an arc in the counterclockwise direction

The result is circularly polarized radiation above and below the on-axis radiation.

Wigglers and undulators

Wiggler

Wigglers and undulators

Wiggler

Like bending magnet except:

Wigglers and undulators

Wiggler

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}

Wigglers and undulators

Wiggler

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}
- more bends \rightarrow higher power

Wigglers and undulators

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}
- more bends \rightarrow higher power

Wigglers and undulators

Wiggler

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}
- more bends \rightarrow higher power

Wigglers and undulators

Wiggler

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}
- more bends \rightarrow higher power

Different from bending magnet:

- shallow bends \rightarrow smaller source

Wigglers and undulators

Like bending magnet except:

- larger $\vec{B} \rightarrow$ higher E_{c}
- more bends \rightarrow higher power

Wiggler radiation

- The electron's trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet

$$
\operatorname{Power}[\mathrm{kW}]=1.266 \mathcal{E}_{e}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

Wiggler radiation

- The electron's trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet
- If there are N poles to the wiggler, there are $2 N$ arcs

$$
\operatorname{Power}[\mathrm{kW}]=1.266 \mathcal{E}_{e}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] L[\mathrm{~m}] /[\mathrm{A}]
$$

Wiggler radiation

- The electron's trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet
- If there are N poles to the wiggler, there are $2 N$ arcs
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.

$$
\operatorname{Power}[\mathrm{kW}]=1.266 \mathcal{E}_{e}^{2}[\mathrm{GeV}] B^{2}[\mathrm{~T}] \angle[\mathrm{m}] I[\mathrm{~A}]
$$

Wiggler radiation

- The electron's trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet
- If there are N poles to the wiggler, there are $2 N$ arcs
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.
- The magnetic field varies along the length of the wiggler and is higher than that in a bending magnet, having an average value of $B_{r m s}=B_{0} / \sqrt{2}$

$$
\text { Power }[\mathrm{kW}]=0.633 \mathcal{E}_{e}^{2}[\mathrm{GeV}] B_{0}^{2}[\mathrm{~T}] L[\mathrm{~m}] I[\mathrm{~A}]
$$

Wiggler radiation

- The electron's trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet
- If there are N poles to the wiggler, there are $2 N$ arcs
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.
- The magnetic field varies along the length of the wiggler and is higher than that in a bending magnet, having an average value of $B_{r m s}=B_{0} / \sqrt{2}$
- This results in a significantly higher power load on all downstream components

$$
\operatorname{Power}[\mathrm{kW}]=0.633 \mathcal{E}_{e}^{2}[\mathrm{GeV}] B_{0}^{2}[\mathrm{~T}] L[\mathrm{~m}] I[\mathrm{~A}]
$$

Undulator characterization

Undulator radiation is characterized by three parameters:

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$

$$
x=A \sin \left(k_{u} z\right)
$$

- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

From the electron trajectory:

$$
x=A \sin \left(k_{u} z\right)
$$

$\alpha_{\text {max }}$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

From the electron trajectory:

$$
\begin{aligned}
x & =A \sin \left(k_{u} z\right) \\
\alpha_{\max } & =\left.\frac{d x}{d z}\right|_{z=0}
\end{aligned}
$$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

From the electron trajectory:

$$
\begin{aligned}
x & =A \sin \left(k_{u} z\right) \\
\alpha_{\max } & =\left.\frac{d x}{d z}\right|_{z=0} \\
& =\left.A k_{u} \cos \left(k_{u} z\right)\right|_{z=0}
\end{aligned}
$$

Undulator characterization

Undulator radiation is characterized by three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

From the electron trajectory:

$$
\begin{aligned}
x & =A \sin \left(k_{u} z\right) \\
\alpha_{\max } & =\left.\frac{d x}{d z}\right|_{z=0} \\
& =\left.A k_{u} \cos \left(k_{u} z\right)\right|_{z=0} \\
& =A k_{u}=2 \pi A / \lambda_{u}
\end{aligned}
$$

Undulator characterization

Undulator radiation is characterized by
From the electron trajectory: three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

$$
\begin{aligned}
x & =A \sin \left(k_{u} z\right) \\
\alpha_{\max } & =\left.\frac{d x}{d z}\right|_{z=0} \\
& =\left.A k_{u} \cos \left(k_{u} z\right)\right|_{z=0} \\
& =A k_{u}=2 \pi A / \lambda_{u}
\end{aligned}
$$

Define a dimensionless quantity, K which scales $\alpha_{\max }$ to the natural opening angle of the radiation, $1 / \gamma$

Undulator characterization

Undulator radiation is characterized by
From the electron trajectory: three parameters:

- The energy of the electrons, $\gamma m c^{2}$
- The wavelength, $\lambda_{u}=2 \pi / k_{u}$, of it's magnetic field
- The maximum angular deviaton of the electron, $\alpha_{\text {max }}$

$$
\begin{aligned}
x & =A \sin \left(k_{u} z\right) \\
\alpha_{\max } & =\left.\frac{d x}{d z}\right|_{z=0} \\
& =\left.A k_{u} \cos \left(k_{u} z\right)\right|_{z=0} \\
& =A k_{u}=2 \pi A / \lambda_{u}
\end{aligned}
$$

Define a dimensionless quantity, K which scales $\alpha_{\max }$ to the natural opening angle of the radiation, $1 / \gamma$

$$
K=\alpha_{\max } \gamma
$$

Circular path approximation

Consider the trajectory of the electron along one period of the undulator.

Circular path approximation

Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x=-(\rho-A)$ and $z=0$.

Circular path approximation

Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x=-(\rho-A)$ and $z=0$. The equation of the circle which approximates the arc is:

Circular path approximation

Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x=-(\rho-A)$ and $z=0$.
The equation of the circle which approximates the arc is:

$$
\rho^{2}=[x+(\rho-A)]^{2}+z^{2}
$$

Circular path approximation

Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x=-(\rho-A)$ and $z=0$.
The equation of the circle which approximates the arc is:

$$
\begin{aligned}
& \rho^{2}=[x+(\rho-A)]^{2}+z^{2} \\
& x+(\rho-A)=\sqrt{\rho^{2}-z^{2}}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:

$$
x=A-\rho+\sqrt{\rho^{2}-z^{2}}
$$

Radius of curvature

From the equation for a circle:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right)
\end{aligned}
$$

Radius of curvature

From the equation for a circle:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{array}{rlrl}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} & \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} & & \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) & & \approx A\left(1-\frac{k_{u}^{2} z^{2}}{2}\right) \\
& \approx A-\frac{z^{2}}{2 \rho} & & \approx A-\frac{A k_{u}^{2} z^{2}}{2}
\end{array}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

$$
\begin{aligned}
x & =A \cos \left(k_{u} z\right) \\
& \approx A\left(1-\frac{k_{u}^{2} z^{2}}{2}\right) \\
& \approx A-\frac{A k_{u}^{2} z^{2}}{2}
\end{aligned}
$$

Combining, we have

$$
\frac{z^{2}}{2 \rho}=\frac{A k_{u}^{2} z^{2}}{2}
$$

Radius of curvature

From the equation for a circle:
For the undulating path:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

$$
\begin{aligned}
x & =A \cos \left(k_{u} z\right) \\
& \approx A\left(1-\frac{k_{u}^{2} z^{2}}{2}\right) \\
& \approx A-\frac{A k_{u}^{2} z^{2}}{2}
\end{aligned}
$$

Combining, we have

$$
\frac{z^{2}}{2 \rho}=\frac{A k_{u}^{2} z^{2}}{2} \quad \longrightarrow \quad \frac{1}{\rho}=A k_{u}^{2}
$$

Radius of curvature

From the equation for a circle:

$$
\begin{aligned}
x & =A-\rho+\sqrt{\rho^{2}-z^{2}} \\
& =A-\rho+\rho \sqrt{1-\frac{z^{2}}{\rho^{2}}} \\
& \approx A-\rho+\rho\left(1-\frac{1}{2} \frac{z^{2}}{\rho^{2}}\right) \\
& \approx A-\frac{z^{2}}{2 \rho}
\end{aligned}
$$

$$
\begin{aligned}
x & =A \cos \left(k_{u} z\right) \\
& \approx A\left(1-\frac{k_{u}^{2} z^{2}}{2}\right) \\
& \approx A-\frac{A k_{u}^{2} z^{2}}{2}
\end{aligned}
$$

Combining, we have

$$
\frac{z^{2}}{2 \rho}=\frac{A k_{u}^{2} z^{2}}{2} \quad \longrightarrow \quad \frac{1}{\rho}=A k_{u}^{2} \quad \longrightarrow \quad \rho=\frac{1}{A k_{u}^{2}}=\frac{\lambda_{u}^{2}}{4 \pi^{2} A}
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
d s=\sqrt{(d x)^{2}+(d z)^{2}}
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z=-A k_{u} \sin k_{u} z
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z=-A k_{u} \sin k_{u} z
$$

Now calculate the length of the path traveled by the electron over one period of the undulator

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z=-A k_{u} \sin k_{u} z
$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$
S \lambda_{u}=\int_{0}^{\lambda_{u}} \sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z=-A k_{u} \sin k_{u} z
$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$
S \lambda_{u}=\int_{0}^{\lambda_{u}} \sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z \approx \int_{0}^{\lambda_{u}}\left[1+\frac{1}{2}\left(\frac{d x}{d z}\right)^{2}\right] d z
$$

Electron path length

The displacement $d s$ of the electron can be expressed in terms of the two coordinates, x and z as:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d z)^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z
\end{aligned}
$$

$$
\frac{d x}{d z}=\frac{d}{d z} A \cos k_{u} z=-A k_{u} \sin k_{u} z
$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$
\begin{aligned}
S \lambda_{u} & =\int_{0}^{\lambda_{u}} \sqrt{1+\left(\frac{d x}{d z}\right)^{2}} d z \approx \int_{0}^{\lambda_{u}}\left[1+\frac{1}{2}\left(\frac{d x}{d z}\right)^{2}\right] d z \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z
\end{aligned}
$$

Electron path length

$$
S \lambda_{u}=\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z
$$

Electron path length

$$
S \lambda_{u}=\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z
$$

Using the identity:

$$
\sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2}
$$

Electron path length

$$
\begin{array}{rlr}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z & \text { Using the identity: } \\
& \sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2} \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z &
\end{array}
$$

Electron path length

$$
\begin{array}{rlr}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z & \text { Using the identity: } \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z & \\
& =\left[z+\frac{A^{2} k_{u} z}{4} z+\left.\frac{A^{2} k_{u}}{8} \sin 2 k_{u} z\right|_{0} ^{\lambda_{u}}\right. & \text { integrating, } \\
2 &
\end{array}
$$

Electron path length

$$
\begin{aligned}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z \\
& =\left[z+\frac{A^{2} k_{u}^{2}}{4} z+\left.\frac{A^{2} k_{u}}{8} \sin 2 k_{u} z\right|_{0} ^{\lambda_{u}}\right.
\end{aligned}
$$

Using the identity:

$$
\sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2}
$$

integrating, the final term vanishes

Electron path length

$$
\begin{aligned}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z \\
& =\left[z+\frac{A^{2} k_{u}^{2}}{4} z+\left.\frac{A^{2} k_{u}}{8} \sin 2 k_{u} z\right|_{0} ^{\lambda_{u}}\right. \\
& =\lambda_{u}\left(1+\frac{A^{2} k_{u}^{2}}{4}\right)
\end{aligned}
$$

Using the identity:

$$
\sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2}
$$

integrating, the final term vanishes

Electron path length

$$
\begin{aligned}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z \\
& =\left[z+\frac{A^{2} k_{u}^{2}}{4} z+\left.\frac{A^{2} k_{u}}{8} \sin 2 k_{u} z\right|_{0} ^{\lambda_{u}}\right. \\
& =\lambda_{u}\left(1+\frac{A^{2} k_{u}^{2}}{4}\right)
\end{aligned}
$$

Using the identity:

$$
\sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2}
$$

integrating, the final term vanishes
using the definition of the undulator parameter, $K=\gamma A k_{u}$, we have

Electron path length

$$
\begin{aligned}
S \lambda_{u} & =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2} \sin ^{2} k_{u} z\right] d z \\
& =\int_{0}^{\lambda_{u}}\left[1+\frac{A^{2} k_{u}^{2}}{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 k_{u} z\right)\right] d z \\
& =\left[z+\frac{A^{2} k_{u}^{2}}{4} z+\left.\frac{A^{2} k_{u}}{8} \sin 2 k_{u} z\right|_{0} ^{\lambda_{u}}\right. \\
& =\lambda_{u}\left(1+\frac{A^{2} k_{u}^{2}}{4}\right)=\lambda_{u}\left(1+\frac{1}{4} \frac{K^{2}}{\gamma^{2}}\right)
\end{aligned}
$$

Using the identity:

Using the identity:

$$
\sin ^{2} k_{u} z=\frac{1+\cos 2 k_{u} z}{2}
$$

integrating, the final term vanishes
using the definition of the undulator parameter, $K=\gamma A k_{u}$, we have

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}=\frac{e}{2 \pi m c} \lambda_{u} B_{0}
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}=\frac{e}{2 \pi m c} \lambda_{u} B_{0}=0.934 \lambda_{u}[\mathrm{~cm}] B_{0}[\mathrm{~T}]
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}=\frac{e}{2 \pi m c} \lambda_{u} B_{0}=0.934 \lambda_{u}[\mathrm{~cm}] B_{0}[\mathrm{~T}]
$$

For APS Undulator $\mathrm{A}, \lambda_{u}=3.3 \mathrm{~cm}$ and $B_{0}=0.6 \mathrm{~T}$ at closed gap, so

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}=\frac{e}{2 \pi m c} \lambda_{u} B_{0}=0.934 \lambda_{u}[\mathrm{~cm}] B_{0}[\mathrm{~T}]
$$

For APS Undulator $\mathrm{A}, \lambda_{u}=3.3 \mathrm{~cm}$ and $B_{0}=0.6 \mathrm{~T}$ at closed gap, so

$$
K=0.934 \cdot 3.3[\mathrm{~cm}] \cdot 0.6[\mathrm{~T}]
$$

The K parameter

Given the definition $K=\gamma A k_{u}$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$
\rho=\frac{1}{A k_{u}^{2}} \quad \longrightarrow \quad \rho=\frac{\gamma}{K k_{u}}
$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$
p=\gamma m v \approx \gamma m c=\rho e B_{0} \quad \longrightarrow \quad \gamma m c \approx \frac{\gamma}{K k_{u}} e B_{0}
$$

Combining the above expressions yields

$$
K=\frac{e B_{0}}{m c k_{u}}=\frac{e}{2 \pi m c} \lambda_{u} B_{0}=0.934 \lambda_{u}[\mathrm{~cm}] B_{0}[\mathrm{~T}]
$$

For APS Undulator $\mathrm{A}, \lambda_{u}=3.3 \mathrm{~cm}$ and $B_{0}=0.6 \mathrm{~T}$ at closed gap, so

$$
K=0.934 \cdot 3.3[\mathrm{~cm}] \cdot 0.6[\mathrm{~T}]=1.85
$$

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

The emitted wave travels slightly faster than the electron.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

The emitted wave travels slightly faster than the electron.
It moves $c T^{\prime}$ in the time the electron travels a distance λ_{u} along the undulator.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

The emitted wave travels slightly
The observer sees radiation with a compressed wavelength, faster than the electron.
It moves $c T^{\prime}$ in the time the electron travels a distance λ_{u} along the undulator.

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

The emitted wave travels slightly
The observer sees radiation with a compressed wavelength, faster than the electron.
It moves $c T^{\prime}$ in the time the electron travels a distance λ_{u} along the undulator.

$$
\lambda_{1}=c T^{\prime}-\lambda_{u}
$$

Undulator wavelength

Consider an electron traveling through the undulator and emitting radiation at the first maximum excursion from the center.

The emitted wave travels slightly faster than the electron. It moves $c T^{\prime}$ in the time the electron travels a distance λ_{u} along the undulator.

The observer sees radiation with a compressed wavelength, along with harmonics which satisfy the same condition.

$$
n \lambda_{n}=c T^{\prime}-\lambda_{u}
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
T^{\prime}=\frac{S \lambda_{u}}{v}
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\begin{aligned}
\lambda_{1} & =c T^{\prime}-\lambda_{u} \cos \theta \\
& =\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right)
\end{aligned}
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
T^{\prime}=\frac{S \lambda_{u}}{v}
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\begin{aligned}
\lambda_{1} & =c T^{\prime}-\lambda_{u} \cos \theta \\
& =\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right)
\end{aligned}
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
\begin{gathered}
T^{\prime}=\frac{S \lambda_{u}}{v} \\
S \approx 1+\frac{K^{2}}{4 \gamma^{2}}
\end{gathered}
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
\begin{array}{lr}
=\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right) & T^{\prime}=\frac{S \lambda_{u}}{v} \\
=\lambda_{u}\left(\left[1+\frac{K^{2}}{4 \gamma^{2}}\right] \frac{1}{\beta}-\cos \theta\right) & S \approx 1+\frac{K^{2}}{4 \gamma^{2}}
\end{array}
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
=\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right)
$$

$$
=\lambda_{u}\left(\left[1+\frac{K^{2}}{4 \gamma^{2}}\right] \frac{1}{\beta}-\cos \theta\right)
$$

$$
\begin{gathered}
T^{\prime}=\frac{S \lambda_{u}}{v} \\
S \approx 1+\frac{K^{2}}{4 \gamma^{2}}
\end{gathered}
$$

Since γ is large, the maximum observation angle θ is small so

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
\begin{array}{lr}
=\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right) & T^{\prime}=\frac{S \lambda_{u}}{v} \\
=\lambda_{u}\left(\left[1+\frac{K^{2}}{4 \gamma^{2}}\right] \frac{1}{\beta}-\cos \theta\right) & S \approx 1+\frac{K^{2}}{4 \gamma^{2}}
\end{array}
$$

Since γ is large, the maximum observation angle θ is small so

$$
\lambda_{1} \approx \lambda_{u}\left(\frac{1}{\beta}+\frac{K^{2}}{4 \gamma^{2} \beta}-1+\frac{\theta^{2}}{2}\right)
$$

The fundamental wavelength

The fundamental wavelength must be corrected for the observer angle θ

$$
\lambda_{1}=c T^{\prime}-\lambda_{u} \cos \theta
$$

Over the time T^{\prime} the electron actually travels a distance $S \lambda_{u}$, so that

$$
\begin{array}{lr}
=\lambda_{u}\left(S \frac{c}{v}-\cos \theta\right) & T^{\prime}=\frac{S \lambda_{u}}{v} \\
=\lambda_{u}\left(\left[1+\frac{K^{2}}{4 \gamma^{2}}\right] \frac{1}{\beta}-\cos \theta\right) & S \approx 1+\frac{K^{2}}{4 \gamma^{2}}
\end{array}
$$

Since γ is large, the maximum observation angle θ is small so

$$
\lambda_{1} \approx \lambda_{u}\left(\frac{1}{\beta}+\frac{K^{2}}{4 \gamma^{2} \beta}-1+\frac{\theta^{2}}{2}\right)=\frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

$$
\approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \gamma^{2}\left[\frac{1}{\beta}-1\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

$$
\approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \gamma^{2}\left[\frac{1}{\beta}-1\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

$$
\gamma=\sqrt{\frac{1}{1-\beta^{2}}}
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

$$
\begin{aligned}
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \gamma^{2}\left[\frac{1}{\beta}-1\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \\
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \frac{1}{1-\beta^{2}}\left[\frac{1-\beta}{\beta}\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
\end{aligned}
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

$$
\begin{aligned}
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \gamma^{2}\left[\frac{1}{\beta}-1\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \\
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \frac{1}{1-\beta^{2}}\left[\frac{1-\beta}{\beta}\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
\end{aligned}
$$

$$
1-\beta^{2}=(1+\beta)(1-\beta)
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2 \gamma^{2}}{\beta}+\frac{K^{2}}{2 \beta}-2 \gamma^{2}+\gamma^{2} \theta^{2}\right)
$$

regrouping terms

$$
\begin{aligned}
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \gamma^{2}\left[\frac{1}{\beta}-1\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \\
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(2 \frac{1}{1-\beta^{2}}\left[\frac{1-\beta}{\beta}\right]+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \\
& \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-[\gamma \theta]^{2}\right)
\end{aligned}
$$

The fundamental wavelength

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

This corresponds to an energy $\mathcal{E}_{1} \approx 8.2 \mathrm{keV}$ but as the undulator gap is widened

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

This corresponds to an energy $\mathcal{E}_{1} \approx 8.2 \mathrm{keV}$ but as the undulator gap is widened, B_{0} decreases

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

This corresponds to an energy $\mathcal{E}_{1} \approx 8.2 \mathrm{keV}$ but as the undulator gap is widened, B_{0} decreases, K decreases

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

This corresponds to an energy $\mathcal{E}_{1} \approx 8.2 \mathrm{keV}$ but as the undulator gap is widened, B_{0} decreases, K decreases, λ_{1} decreases

The fundamental wavelength

If we assume that $\beta \sim 1$ for these highly relativistic electrons

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(\frac{2}{\beta(1+\beta)}+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right) \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2 \beta}-(\gamma \theta)^{2}\right)
$$

and directly on axis

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

for a typical undulator $\gamma \sim 10^{4}, K \sim 1$, and $\lambda_{u} \sim 2 \mathrm{~cm}$ so we estimate

$$
\lambda_{1} \approx \frac{2 \times 10^{-2}}{2\left(10^{4}\right)^{2}}\left(1+\frac{(1)^{2}}{2}\right)=1.5 \times 10^{-10} \mathrm{~m}=1.5 \AA
$$

This corresponds to an energy $\mathcal{E}_{1} \approx 8.2 \mathrm{keV}$ but as the undulator gap is widened, B_{0} decreases, K decreases, λ_{1} decreases, and \mathcal{E}_{1} increases.

Higher harmonics

> Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.

Higher harmonics

> Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.

$$
\frac{d t}{d t^{\prime}}=1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right)
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \vec{n}=\left\{\phi, \psi, \sqrt{1-\theta^{2}}\right\} \\
& \vec{\beta}=\beta\left\{\alpha, 0, \sqrt{1-\alpha^{2}}\right\}
\end{aligned}
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \vec{\beta} \approx \beta\left\{\alpha, 0,\left(1-\alpha^{2} / 2\right)\right\}
\end{aligned}
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & =1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right) & & \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \approx 1-\beta\left[\alpha \phi+\left(1-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)\right] & & \vec{\beta} \approx \beta\left\{\alpha, 0,\left(1-\alpha^{2} / 2\right)\right\}
\end{aligned}
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \frac{d t}{d t^{\prime}}=1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right) \\
& \approx 1-\beta\left[\alpha \phi+\left(1-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)\right] \quad \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \frac{d t}{d t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)
\end{aligned}
$$

Higher harmonics

$$
\frac{d t}{d t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}
\end{aligned}
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second and third terms.

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second and third terms.

The motion of the electron, $\sin \omega_{u} t^{\prime}$, is always sinusoidal, but because of the additional terms, the motion as seen by the observer, $\sin \omega_{1} t$, is not.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$
(on axis), then

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{u} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{u} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{u} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$ and $K=$ 5 , the deviation becomes more pronounced.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{\mu} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$ and $K=$ 5 , the deviation becomes more pronounced. This shows how higher harmonics must be present in the radiation as seen by the observer.

Off-axis undulator characteristics

$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have

Off-axis undulator characteristics

$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have
$\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{4} \sin \left(2 \omega_{u} t^{\prime}\right)+\sin \omega_{u} t^{\prime}$

Off-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)
$$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have
$\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{4} \sin \left(2 \omega_{u} t^{\prime}\right)+\sin \omega_{u} t^{\prime}$
The last term introduces an antisymmetric term which skews the function

Off-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)
$$

The last term introduces an antisymmetric term which skews the function and leads to the presence of forbidden harmonics ($2^{\text {nd }}, 4^{\text {th }}$, etc) in the radiation from the undulator compared to the on-axis radiation.

Energy

Spectral comparison

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet
- Both odd and even harmonics appear

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet
- Both odd and even harmonics appear
- Harmonics can be tuned in energy (dashed lines)

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$,

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$. So at the detector, we have a sum of waves:

$$
\sum_{m=0}^{N-1} e^{i(\vec{k} \cdot \vec{r}+2 \pi m \epsilon)}
$$

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$. So at the detector, we have a sum of waves:

$$
\sum_{m=0}^{N-1} e^{i(\vec{k} \cdot \vec{r}+2 \pi m \epsilon)}=e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

$$
S_{N}-k S_{N}=1-k^{N}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

$$
S_{N}-k S_{N}=1-k^{N} \quad \longrightarrow \quad S_{N}=\frac{1-k^{N}}{1-k}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} \frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)} e^{i \pi(N-1) \epsilon}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
\begin{gathered}
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} \frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)} e^{i \pi(N-1) \epsilon}\right|^{2} \\
I=\frac{\sin ^{2}(\pi N \epsilon)}{\sin ^{2}(\pi \epsilon)}
\end{gathered}
$$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
$2 \pi \varepsilon=0$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

$$
2 \pi \varepsilon=5^{\circ}
$$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

With the height and width of the peak dependent on the number of poles.

