Today's outline - January 16, 2020

Today's outline - January 16, 2020

- Crystal lattice types

Today's outline - January 16, 2020

- Crystal lattice types
- The reciprocal lattice

Today's outline - January 16, 2020

- Crystal lattice types
- The reciprocal lattice
- Compton (inelastic) scattering

Today's outline - January 16, 2020

- Crystal lattice types
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

$$
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }}
$$

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number so it is always small unless $\mathbf{Q} \cdot \mathbf{R}_{n}=2 \pi m$ where $\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$ is a real space lattice vector and m is an integer.

Scattering from a crystal (review)

Recall that for a crystal lattice which is a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number so it is always small unless $\mathbf{Q} \cdot \mathbf{R}_{n}=2 \pi m$ where $\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$ is a real space lattice vector and m is an integer.

This condition is fulfilled only when \mathbf{Q} is a reciprocal lattice vector.

Crystal lattices

There are 7 possible real space lattices: triclinic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral, cubic

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}}
$$

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}}
\end{aligned}
$$

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}}
\end{aligned}
$$

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

A simple way of calculating the volume of the unit cell!

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

A simple way of calculating the volume of the unit cell!
This unit cell is repeated infintely in 3-dimensions and thus, the location of each lattice point can be calculated relative to any arbitrary lattice point designated as the origin.

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

A simple way of calculating the volume of the unit cell!
This unit cell is repeated infintely in 3-dimensions and thus, the location of each lattice point can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, \mathbf{R}_{n}

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

A simple way of calculating the volume of the unit cell!
This unit cell is repeated infintely in 3-dimensions and thus, the location of each lattice point can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, \mathbf{R}_{n}

$$
\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}
$$

Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{aligned}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2} & =b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2} & =a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3} & =a b c=V
\end{aligned}
$$

A simple way of calculating the volume of the unit cell!
This unit cell is repeated infintely in 3-dimensions and thus, the location of each lattice point can be calculated relative to any arbitrary lattice point designated as the origin.

Each lattice point is at the end of a lattice vector, \mathbf{R}_{n} and a crystal is made by putting a molecule at each lattice point.

$$
\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}
\end{aligned}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}
\end{aligned}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

$$
\mathbf{G}_{h k l}=h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}
$$

Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

$$
\mathbf{G}_{h k l}=h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}
$$

where h, k, and I are integers called Miller indices

Laue condition

Because of the construction of the reciprocal lattice

Laue condition

Because of the construction of the reciprocal lattice
$\mathbf{G}_{n k l} \cdot \mathbf{R}_{n}$

Laue condition

Because of the construction of the reciprocal lattice

$$
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n}=\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right)
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right)
\end{aligned}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor

$$
\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}} \neq 0
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}} \neq 0 \quad \mathbf{Q}=\mathbf{G}_{h k l}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}} \neq 0 \quad \mathbf{Q}=\mathbf{G}_{h k l}
$$

so a significant number of molecules scatter in phase with each other

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+I \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}} \neq 0 \quad \mathbf{Q}=\mathbf{G}_{h k l}
$$

so a significant number of molecules scatter in phase with each other
As we shall see later, this Laue condition, is equivalent to the more typically used Bragg condition for diffraction: $2 d \sin \theta=n \lambda$

Multiple slit interference

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

Multiple slit interference

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!
When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Multiple slit interference

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!
When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Multiple slit interference

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!
When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Compton scattering

A photon-electron collision

Compton scattering

A photon-electron collision

Compton scattering

A photon-electron collision

$$
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime}
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} \quad \text { (energy) }
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
\begin{array}{ll}
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} & \text { (energy) } \\
\frac{h}{\lambda}=\frac{h}{\lambda^{\prime}} \cos \phi+\gamma m v \cos \theta & (x \text {-axis })
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
\begin{array}{cc}
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} & (\text { energy }) \\
\frac{h}{\lambda}=\frac{h}{\lambda^{\prime}} \cos \phi+\gamma m v \cos \theta & (x \text {-axis }) \\
0=\frac{h}{\lambda^{\prime}} \sin \phi+\gamma m v \sin \theta & (y \text {-axis })
\end{array}
$$

Compton scattering derivation

squaring the momentum equations

Compton scattering derivation

squaring the momentum $\quad\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}=\gamma^{2} m^{2} v^{2} \cos ^{2} \theta$
equations

Compton scattering derivation

squaring the momentum

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

Compton scattering derivation

squaring the momentum

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together,

$$
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$, expand the squares,

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi
\end{aligned}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$, expand the squares, and $\sin ^{2} \phi+\cos ^{2} \phi=1$, then rearrange

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi \\
\frac{m^{2} v^{2}}{1-\beta^{2}} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}}
\end{aligned}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$, expand the squares, and $\sin ^{2} \phi+\cos ^{2} \phi=1$, then rearrange and substitute $v=\beta c$

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi \\
\frac{m^{2} c^{2} \beta^{2}}{1-\beta^{2}}=\frac{m^{2} v^{2}}{1-\beta^{2}} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}}
\end{aligned}
$$

Compton scattering derivation (cont.)

Now take the energy equation and square it,

$$
\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}}
$$

Compton scattering derivation (cont.)

Now take the energy equation and square it, then solve it for β^{2}

$$
\begin{gathered}
\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}} \\
\beta^{2}=1-\frac{m^{2} c^{4}}{\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}}
\end{gathered}
$$

Compton scattering derivation (cont.)

Now take the energy equation and square it, then solve it for β^{2} which is substituted into the equation from the momentum.

$$
\begin{gathered}
\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}} \\
\beta^{2}=1-\frac{m^{2} c^{4}}{\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}} \\
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi=\frac{m^{2} c^{2} \beta^{2}}{1-\beta^{2}}
\end{gathered}
$$

Compton scattering derivation (cont.)

Now take the energy equation and square it, then solve it for β^{2} which is substituted into the equation from the momentum.

$$
\begin{aligned}
&\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}} \\
& \beta^{2}=1-\frac{m^{2} c^{4}}{\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}} \\
& \begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\frac{m^{2} c^{2} \beta^{2}}{1-\beta^{2}} \\
& =\frac{1}{c^{2}}\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2}
\end{aligned}
\end{aligned}
$$

Compton scattering derivation (cont.)

$$
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi=\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2}
$$

Compton scattering derivation (cont.)

After expansion,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2}
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}}
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2} /}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}}
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2} /}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \\
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi) & =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \\
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi) & =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)=2 m h c\left(\frac{\lambda^{\prime}-\lambda}{\lambda \lambda^{\prime}}\right)
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \\
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi) & =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)=2 m h c\left(\frac{\lambda^{\prime}-\lambda}{\lambda \lambda^{\prime}}\right)=\frac{2 m h c \Delta \lambda}{\lambda \lambda^{\prime}}
\end{aligned}
$$

Compton scattering derivation (cont.)

After expansion, cancellation,

$$
\begin{aligned}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi & =\left(m c+\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}}\right)^{2}-m^{2} c^{2} \\
& =m^{2} c^{2}+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 m c h}{\lambda}-\frac{2 m c h}{\lambda^{\prime}}+\frac{2 h^{2}}{\lambda \lambda^{\prime}}-m^{2} c^{2} \\
& =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2} /}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \\
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi) & =2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)=2 m h c\left(\frac{\lambda^{\prime}-\lambda}{\lambda \lambda^{\prime}}\right)=\frac{2 m h c \Delta \lambda}{\lambda X^{\prime}} \\
\Delta \lambda & =\frac{h}{m c}(1-\cos \phi)
\end{aligned}
$$

Compton scattering results

Thus, for an electron

Compton scattering results

Thus, for an electron

$$
\lambda_{c}=\hbar / m c=3.86 \times 10^{-3} \AA
$$

Compton scattering results

Thus, for an electron

$$
\begin{aligned}
\lambda_{c} & =\hbar / m c=3.86 \times 10^{-3} \AA \\
r_{0} & =\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \times 10^{-5} \AA
\end{aligned}
$$

Compton scattering results

Thus, for an electron

$$
\begin{aligned}
\lambda_{c} & =\hbar / m c=3.86 \times 10^{-3} \AA \\
r_{0} & =\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \times 10^{-5} \AA
\end{aligned}
$$

Compton scattering results

Thus, for an electron

$$
\lambda_{c}=\hbar / m c=3.86 \times 10^{-3} \AA
$$

Comparing the two scattering lengths: $r_{0} / \lambda_{C}=1 / 137$

$$
r_{0}=\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \times 10^{-5} \AA
$$

X-ray absorption

X-ray absorption

For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

X-ray absorption

For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z
$$

X-ray absorption

For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z \quad \longrightarrow \frac{d l}{l(z)}=-\mu d z
$$

X-ray absorption

For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z \quad \longrightarrow \frac{d l}{l(z)}=-\mu d z
$$

integrating both sides

X-ray absorption

integrating both sides
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \quad \longrightarrow \frac{d l}{l(z)}=-\mu d z \\
\int \frac{d l}{l(z)} & =-\int \mu d z
\end{aligned}
$$

X-ray absorption

integrating both sides
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{l(z)}=-\mu d z \\
\int \frac{d l}{l(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

X-ray absorption

integrating both sides
and taking the anti-log
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{l(z)}=-\mu d z \\
\int \frac{d l}{l(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

X-ray absorption

integrating both sides
and taking the anti-log
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{I(z)}=-\mu d z \\
\int \frac{d l}{I(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

$$
I=e^{C} e^{-\mu z}=A e^{-\mu z}
$$

X-ray absorption

integrating both sides
and taking the anti-log

$$
I=e^{C} e^{-\mu z}=A e^{-\mu z}
$$

if the intensity at $z=0$
is I_{0}, then
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{I(z)}=-\mu d z \\
\int \frac{d l}{I(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

X-ray absorption

integrating both sides
and taking the anti-log
if the intensity at $z=0$ is I_{0}, then

For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{I(z)}=-\mu d z \\
\int \frac{d l}{I(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

$$
I=e^{C} e^{-\mu z}=A e^{-\mu z}
$$

$$
I=I_{0} e^{-\mu z}
$$

X-ray absorption

integrating both sides
For absorption coefficient μ and thickness $d z$ the x-ray intensity is attenuated as

$$
\begin{aligned}
d l & =-l(z) \mu d z \longrightarrow \frac{d l}{I(z)}=-\mu d z \\
\int \frac{d l}{l(z)} & =-\int \mu d z \longrightarrow \ln (I)=-\mu z+C
\end{aligned}
$$

and taking the anti-log

$$
I=e^{C} e^{-\mu z}=A e^{-\mu z}
$$

if the intensity at $z=0$

$$
I=I_{0} e^{-\mu z}
$$

This is just Beer's law with an absorption coefficient which depends on x-ray parameters.

Absorption event

- X-ray is absorbed by an atom

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum
- Ion remains with a core-hole

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

Fluorescence emission

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole

$-\bigcirc$

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell
- The result is a cascade of fluorescence photons which are characteristic of the absorbing atom

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells
- So that the secondary electron is accompanied by fluorescence emissions at lower energies

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \overline{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{Z^{4}}{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{\rho Z^{4}}{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{\rho Z^{4}}{A E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve Atoms in a solid or liquid show fine structure after the absorption edge called XANES and EXAFS

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.

$$
\mu=\rho_{\mathrm{a}} \sigma_{a}
$$

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.
rewriting in terms of the mass density, ρ_{m}, the atomic mass, M_{a}, and Avogadro's number, N_{A}, the absorption coefficient becomes

$$
\mu=\rho_{a} \sigma_{a}
$$

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.
rewriting in terms of the mass density, ρ_{m}, the atomic mass, M_{a}, and Avogadro's number, N_{A}, the absorption coefficient becomes

$$
\mu=\rho_{a} \sigma_{a}=\left(\frac{\rho_{m} N_{A}}{M_{a}}\right) \sigma_{a}
$$

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.
rewriting in terms of the mass density, ρ_{m}, the atomic mass, M_{a}, and Avogadro's number, N_{A}, the absorption coefficient becomes

$$
\mu=\rho_{a} \sigma_{a}=\left(\frac{\rho_{m} N_{A}}{M_{a}}\right) \sigma_{a}
$$

if the absorber is made up of a number of different atoms, this calculation can be generalized

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.
rewriting in terms of the mass density, ρ_{m}, the atomic mass, M_{a}, and Avogadro's number, N_{A}, the absorption coefficient becomes

$$
\mu=\rho_{a} \sigma_{a}=\left(\frac{\rho_{m} N_{A}}{M_{a}}\right) \sigma_{a}
$$

if the absorber is made up of a number of different atoms, this calculation can be generalized

$$
\mu=\sum_{j} \rho_{j} \sigma_{a j}
$$

Absorption coefficient

For an elemental material, the absorption coefficient, μ, is simply the product of the atomic density, ρ_{a}, times the atomic absorption cross-section, σ_{a}.
rewriting in terms of the mass density, ρ_{m}, the atomic mass, M_{a}, and Avogadro's number, N_{A}, the absorption coefficient becomes

$$
\mu=\rho_{\mathrm{a}} \sigma_{a}=\left(\frac{\rho_{m} N_{A}}{M_{a}}\right) \sigma_{a}
$$

if the absorber is made up of a number of different atoms, this calculation can be generalized

$$
\mu=\sum_{j} \rho_{j} \sigma_{a j}
$$

where ρ_{j} and $\sigma_{a j}$ are the atomic density and atomic absorption cross-section of each component

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass absorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes

$$
I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}
$$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes $\quad I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}$
Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes

$$
I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}
$$

Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes

$$
I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}
$$

Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass

$$
M_{c}=\sum_{j} x_{j} M_{j}
$$ M_{c} and density ρ_{c}, we can write:

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab- $\quad \mu_{m}=\mu / \rho$ sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$

Beer's Law now becomes $\quad I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}$
Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

$$
\begin{aligned}
M_{c} & =\sum_{j} x_{j} M_{j} \\
\mu_{m} & =\left(N_{A} / M_{c}\right) \sum_{j} x_{j} \sigma_{a j}
\end{aligned}
$$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab-

$$
\mu_{m}=\mu / \rho
$$

sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$
Beer's Law now becomes

$$
I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}
$$

Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

The "thickness" of a mass m of the compound, distributed over an area A is then:

$$
\begin{aligned}
M_{c} & =\sum_{j} x_{j} M_{j} \\
\mu_{m} & =\left(N_{A} / M_{c}\right) \sum_{j} x_{j} \sigma_{a j}
\end{aligned}
$$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab-

$$
\mu_{m}=\mu / \rho
$$

sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$
Beer's Law now becomes

$$
I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}
$$

Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

The "thickness" of a mass m of the compound, distributed over an area A is then:

$$
\begin{aligned}
M_{c} & =\sum_{j} x_{j} M_{j} \\
\mu_{m} & =\left(N_{A} / M_{c}\right) \sum_{j} x_{j} \sigma_{a j}
\end{aligned}
$$

$$
z=\frac{m}{\rho_{c} A}
$$

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab-

$$
\mu_{m}=\mu / \rho
$$

sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$
Beer's Law now becomes $\quad I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}$
Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

The "thickness" of a mass m of the compound, distributed over an area A is then:

$$
\begin{aligned}
M_{c} & =\sum_{j} x_{j} M_{j} \\
\mu_{m} & =\left(N_{A} / M_{c}\right) \sum_{j} x_{j} \sigma_{a j}
\end{aligned}
$$

$$
z=\frac{m}{\rho_{c} A}
$$

This leads to an absorption per unit mass of μ_{m} / A and Beer's law becomes

Absorption coefficient of a compound

$\mu\left[\mathrm{cm}^{-} 1\right]$ is the linear absorption coefficient. It is useful in practice to define the mass ab-

$$
\mu_{m}=\mu / \rho
$$

sorption coefficient, $\mu_{m}\left[\mathrm{~cm}^{2} / \mathrm{g}\right]$
Beer's Law now becomes $\quad I=I_{0} e^{-\mu z}=I_{0} e^{-\mu_{m} \rho z}$
Suppose we want to compute the absorption coefficient per unit mass of a compound if we distribute it over an area A

If the compound is made up of x_{j} atoms with atomic mass M_{j} and has a molecular mass M_{c} and density ρ_{c}, we can write:

The "thickness" of a mass m of the com-
pound, distributed over an area A is then:
This leads to an absorption per unit mass of
pound, distributed over an area A is then:
This leads to an absorption per unit mass of

$$
\begin{aligned}
& M_{c}=\sum_{j} x_{j} M_{j} \\
& \mu_{m}=\left(N_{A} / M_{c}\right) \sum_{j} x_{j} \sigma_{a j}
\end{aligned}
$$

$$
z=\frac{m}{\rho_{c} A}
$$

μ_{m} / A and Beer's law becomes

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have
$I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\quad \rho=5.24 \mathrm{~g} / \mathrm{cm}^{2}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\quad \rho=5.24 \mathrm{~g} / \mathrm{cm}^{2}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
M_{F e}=55.895 \mathrm{~g} / \mathrm{mol}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{\mathrm{Fe}} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{\mathrm{O}} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{\mathrm{Fe}} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g}
\end{aligned}
$$

begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{\mathrm{Fe}} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g}
\end{aligned}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are
begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g}
\end{aligned}
$$

assuming a 5 mm diameter pellet

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{\mathrm{c}} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi\left(0.25 \mathrm{~cm}^{2}=0.1963 \mathrm{~cm}^{2}\right.
\end{aligned}
$$

begin by finding tabulated values of

$$
\text { the cross-section for the elements } \mathrm{Fe}
$$ and O at 5 keV

assuming a 5 mm diameter pellet

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi(0.25 \mathrm{~cm})^{2}=0.1963 \mathrm{~cm}^{2}
\end{aligned}
$$

begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV
assuming a 5 mm diameter pellet

$$
\mu_{m}=\frac{1}{159.69}[2 \cdot 55.895 \cdot 138.860+3 \cdot 16.000 \cdot 46.666]
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi(0.25 \mathrm{~cm})^{2}=0.1963 \mathrm{~cm}^{2}
\end{aligned}
$$

begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV
assuming a 5 mm diameter pellet

$$
\mu_{m}=\frac{1}{159.69}[2 \cdot 55.895 \cdot 138.860+3 \cdot 16.000 \cdot 46.666]=111.23 \mathrm{~cm}^{2} / \mathrm{g}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{c} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi\left(0.25 \mathrm{~cm}^{2}=0.1963 \mathrm{~cm}^{2}\right.
\end{aligned}
$$

begin by finding tabulated values of the cross-section for the elements Fe and O at 5 keV
assuming a 5 mm diameter pellet

$$
\mu_{m}=\frac{1}{159.69}[2 \cdot 55.895 \cdot 138.860+3 \cdot 16.000 \cdot 46.666]=111.23 \mathrm{~cm}^{2} / \mathrm{g}
$$

$$
\mu_{m} / A=566.7 \mathrm{~g}^{-1}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are
begin by finding tabulated values of

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{\mathrm{c}} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi\left(0.25 \mathrm{~cm}^{2}=0.1963 \mathrm{~cm}^{2}\right.
\end{aligned}
$$ the cross-section for the elements Fe and O at 5 keV

assuming a 5 mm diameter pellet

$$
\mu_{m}=\frac{1}{159.69}[2 \cdot 55.895 \cdot 138.860+3 \cdot 16.000 \cdot 46.666]=111.23 \mathrm{~cm}^{2} / \mathrm{g}
$$

$$
\mu_{m} / A=566.7 \mathrm{~g}^{-1} \quad \mu=\mu_{\mathrm{m}} \rho=582.9 \mathrm{~cm}^{-1}
$$

Absorption of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at 5 keV

The most commonly tabulated cross-sections are not the atomic cross-sections but the mass cross sections, $\sigma_{j}=N_{A} \sigma_{a j} / M_{j}$ so we have $I=I_{0} e^{-\left(\mu_{m} / A\right) m}, \mu_{m}=\frac{N_{A}}{M_{c}} \sum_{j} x_{j} \sigma_{a j}=\frac{N_{A}}{M_{c}} \sum_{j} \frac{M_{j}}{N_{A}} x_{j} \sigma_{j}=\frac{1}{M_{c}} \sum_{j} M_{j} x_{j} \sigma_{j}$
the molecular mass and density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are
begin by finding tabulated values of

$$
\begin{aligned}
\rho & =5.24 \mathrm{~g} / \mathrm{cm}^{2} \\
M_{F e} & =55.895 \mathrm{~g} / \mathrm{mol} \\
M_{O} & =16.000 \mathrm{~g} / \mathrm{mol} \\
M_{\mathrm{c}} & =159.69 \mathrm{~g} / \mathrm{mol} \\
\sigma_{F e} & =138.860 \mathrm{~cm}^{2} / \mathrm{g} \\
\sigma_{O} & =46.666 \mathrm{~cm}^{2} / \mathrm{g} \\
A & =\pi\left(0.25 \mathrm{~cm}^{2}=0.1963 \mathrm{~cm}^{2}\right.
\end{aligned}
$$ the cross-section for the elements Fe and O at 5 keV

assuming a 5 mm diameter pellet

$$
\mu_{m}=\frac{1}{159.69}[2 \cdot 55.895 \cdot 138.860+3 \cdot 16.000 \cdot 46.666]=111.23 \mathrm{~cm}^{2} / \mathrm{g}
$$

$$
\mu_{\mathrm{m}} / A=566.7 \mathrm{~g}^{-1} \quad \mu=\mu_{\mathrm{m}} \rho=582.9 \mathrm{~cm}^{-1} \quad 1 / \mu=17.2 \mu \mathrm{~m}
$$

Comparison of cross sections

Comparison of cross sections

Comparison of cross sections

Photoelectric absorption dominates at low energies

Comparison of cross sections

Photoelectric absorption dominates at low energies
Thomson scattering (coherent) drops rapidly with energy

Comparison of cross sections

Photoelectric absorption dominates at low energies
Thomson scattering (coherent) drops rapidly with energy
Compton scattering (incoherent) dominates at medium energies

Comparison of cross sections

Photoelectric absorption dominates at low energies
Thomson scattering (coherent) drops rapidly with energy
Compton scattering (incoherent) dominates at medium energies Pair production dominates at high energies

